In this conference, I will be reviewing the main aspects of my thesis dissertation. I will introduce the notion of depth of a ring extension $B\subseteqA$ and give several examples as well as important results of recent years. I will then consider a finite dimensional Hopf algebra extension $R \subseteq H$ and its quotient module $Q := H/R^+H$ and show that the depth of such an extension is intrinsically connected to the representation ring of $H, A(H)$. In particular, we will see that finite depth of the extension is equivalent to the quotient module $Q$ being algebraic in $A(H)$. Next, I will introduce entwining structures and use them to show that a certain extension of crossed product algebras is a Galois coring and use that to give a theoretical explanation for a result of S. Danz (2011). Finally, I will discuss factorisation algebras and their roll in depth, in particular a result on the depth of a Hopf algebra $H$ in its generalised factorised smash product with $Q^{*op}$.
The Quotient Module, Coring Depth and Factorisation Algebras
Room M005 - Department of Mathematics - FCUP
Friday, 25 November, 2016 - 12:00
Alberto José Hernandez Alvarado
University of Porto