We examine the relation between a heteroclinic network as a flow-invariant set and directed graphs of possible connections between nodes. In particular, we show that there are robust realizations of a large class of transitive directed graphs that are not complete (i.e. not all unstable manifolds of nodes are included) but almost complete (i.e. complete up to a set of zero measure in the unstable manifold) and equable (i.e. all sets of connections from a node have the same dimension). Moreover, some of these almost complete and equable realizations have "completions", namely by adding extra nodes we can produce a larger network that is complete and may even be asymptotically stable. This is joint work with Sofia Castro (Porto) and Peter Ashwin (Exeter).
On realizing graphs as complete heteroclinic networks
Alexander Lohse
Hamburg University