Representations of surface groups and harmonic maps (Lecture 1)

sala 0.06
Friday, 26 November, 2010 - 14:30

Classical Hodge theory uses harmonic forms as preferred representatives of cohomology classes. A representation of the fundamental group of a Riemann surface gives rise to a corresponding flat bundle. A Theorem of Donaldson and Corlette shows how to find a harmonic metric in this bundle. A flat bundle corresponds to class in first non-abelian cohomology and the Theorem can be viewed as an analogue of the classical representation of de Rham cohomology classes by harmonic forms.

Speaker: 

Peter Gothen