Classical Hodge theory uses harmonic forms as preferred representatives of cohomology classes. A representation of the fundamental group of a Riemann surface gives rise to a corresponding flat bundle. A Theorem of Donaldson and Corlette shows how to find a harmonic metric in this bundle. A flat bundle corresponds to class in first non-abelian cohomology and the Theorem can be viewed as an analogue of the classical representation of de Rham cohomology classes by harmonic forms.
Speaker:
Peter Gothen