Juan Antonio Valiente Kroon, 2019/02/13, 11h, Construction of anti de Sitter-like spacetimes using the metric conformal field equations

In this talk I with describe how to make use of the metric version of the conformal Einstein field equations to construct anti-de Sitter-like spacetimes by means of a suitably posed initial-boundary value problem. The evolution system associated to this initial-boundary value problem consists of a set of conformal wave equations for a number of conformal fields and the conformal metric. This formulation makes use of generalised wave coordinates and allows the free specification of the Ricci scalar of the conformal metric via a conformal gauge source function. I will consider Dirichlet boundary conditions for the evolution equations at the conformal boundary and show that these boundary conditions can, in turn, be constructed from the 3-dimensional Lorentzian metric of the conformal boundary and a linear combination of the incoming and outgoing radiation as measured by certain components of the Weyl tensor. To show that a solution to the conformal evolution equations implies a solution to the Einstein field equations we also provide a discussion of the propagation of the constraints for this initial-boundary value problem. The existence of local solutions to the initial-boundary value problem in a neighbourhood of the corner where the initial hypersurface and the conformal boundary intersect is subject to compatibility conditions between the initial and boundary data. The construction described is amenable to numerical implementation and should allow the systematic exploration of boundary conditions. I will also discuss extensions of this analysis to the case of the Einstein equations coupled with various tracefree matter models. This is work in collaboration with Diego Carranza.