## Davide Masoero, 2019/04/01, 15h, Painlevé IV

We study the distribution of singularities (poles and zeros) of rational solutions of the Painlevé IV equation by means of the isomonodromic deformation method.

We study the distribution of singularities (poles and zeros) of rational solutions of the Painlevé IV equation by means of the isomonodromic deformation method.

An important conjecture in knot theory relates the large-$N$, double scaling limit of the colored Jones polynomial $J_{K,N}(q)$ of a knot $K$ to the hyperbolic volume of the knot complement, Vol($K$). A less studied question is whether Vol($K$) can be recovered directly from the original Jones polynomial ($N=1$). In this report we use a deep neural network to approximate Vol($K$) from the Jones polynomial.

In this talk I with describe how to make use of the metric version of the conformal Einstein field equations to construct anti-de Sitter-like spacetimes by means of a suitably posed initial-boundary value problem. The evolution system associated to this initial-boundary value problem consists of a set of conformal wave equations for a number of conformal fields and the conformal metric. This formulation makes use of generalised wave coordinates and allows the free specification of the Ricci scalar of the conformal metric via a conformal gauge source function.

The presence of symmetric and more generally $k$-jet differentials on surfaces $X$ of general type play an important role in constraining the presence of entire curves (nonconstant holomorphic maps from $\mathbb{C}$ to $X$). Green-Griffiths-Lang conjecture and Kobayashi conjecture are the pillars of the theory of constraints on the existence of entire curves on varieties of general type.

When the surface as a low ratio $c_1^2/c_2$ a simple application of Riemann-Roch is unable to guarantee abundance of symmetric or $k$-jet differentials.

By solving a singular initial value problem, we prove the existence of solutions of the wave equation $\Box_g\phi=0$ which are bounded at the Big Bang in the Friedmann-Lemaitre-Robertson-Walker cosmological models. More precisely, we show that given any function $A \in H^3(\Sigma)$ (where $\Sigma=\mathbb{R}^n$, $\mathbb{S}^n$ or $\mathbb{H}^n$ models the spatial hypersurfaces) there exists a unique solution $\phi$ of the wave equation converging to $A$ in $H^1(\Sigma)$ at the Big Bang, and whose time derivative is suitably controlled in $L^2(\Sigma)$.

The construction of initial data for the Cauchy problem in General Relativity is an interesting problem from both the mathematical and physical points of view. As such, there have been numerous methods studied in the literature the "Conformal Method" of Lichnerowicz-Choquet-Bruhat-York and the "gluing" method of Corvino-Schoen being perhaps the best-explored. In this talk I will describe an alternative, perturbative, approach proposed by A. Butscher and H.

We consider the wave equation, $\square_g\psi=0$, in fixed flat Friedmann-Lemaitre-Robertson-Walker and Kasner spacetimes with topology $\mathbb{R}_+\times\mathbb{T}^3$. We obtain generic blow up results for solutions to the wave equation towards the Big Bang singularity in both backgrounds. In particular, we characterize open sets of initial data prescribed at a spacelike hypersurface close to the singularity, which give rise to solutions that blow up in an open set of the Big Bang hypersurface $\{t=0\}$.

I plan to cover the following topics: Euler equations; Burger's equation; p-system; symmetric hyperbolic PDE's; shock formation; Lax method of solving Riemann problems; Glimm's method for solving Cauchy problems; Entropy solutions; artificial viscosity.

We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities.

In this talk, we will sketch some recent developments about the notion of duality for conservative interacting particle systems. In particular, we will show the simplification that arises in presence of self-duality when considering hydrodynamic limits in a dynamic disorder (joint work with F. Redig and E. Saada). We will find all particle systems which admit a special form of self-duality (joint work with F. Redig) and, in conclusion, we will use the spectral point of view of this notion to address some open questions.