![]() |
![]() |
||
|
Em
1687 Newton usou um método de
aproximação poligonal para
demonstrar a lei das áreas de Kepler, válida para
qualquer força
central.
Feynman retoma essencialmente o mesmo método na sua aula. |
|||
|
|||
| A aproximação poligonal de Newton |
|||
|
Um
corpo desloca-se da posição inicial 0
até à posição 1, com movimento uniforme de
velocidade Na
posição 1
, o corpo (de massa 1) é sujeito à acção
de uma força impulsiva
Mas agora, na posição 1, o corpo está sujeito à lei de composição de velocidades. Pela regra do paralelogramo, a velocidade que ele adquire será:
, ele atinge a
posição 2
, na direcção de e tal que:
e assim
sucessivamente ... Este método é consecutivamente usado por Newton em toda a sua Dinâmica.
|
|||
| Lei das áreas | |||
A prova da lei das áreas é agora elementar. |
|||
|
De facto, os triângulos SO1 e S12 têm a mesma área uma vez que eles têm a mesma base S1 e alturas iguais (porquê?). |
|||
|
|
|||
|
A
lei das áreas diz que: ![]() Uma consequência da lei das
áreas, que será usada em breve,
é a seguinte: o planeta move-se mais rapidamente quando
está
mais perto do Sol.
![]() |
|||
| Página
seguinte: A aula esquecida de Feynman (I) Página anterior: Os problemas directo e inverso Regresso ao Índice |