Publications

Found 2268 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Basto-Gonçalves J. Realization theory for Hamiltonian systems. SIAM J. Control Optim.. 1987;25:63-73.
Basto-Gonçalves J, Reis H.. The geometry of $2\times 2$ systems of conservation laws. Acta Appl. Math.. 2005;88:269-329.Edit
[2013-5] Basto-Gonçalves J. The Gauss map for Lagrangean and isoclinic surfaces .
Basto-Gonçalves J. Second-order conditions for local controllability. Systems Control Lett.. 1998;35:287-290.
Basto-Gonçalves J. Geometric conditions for local controllability. J. Differential Equations. 1991;89:388-395.
Basto-Gonçalves J. Equivalence of gradient systems. Portugal. Math.. 1981;40:263-277 (1985).
[2004-6] Basto-Gonçalves J, Ferreira AC. Normal forms and linearization of resonant vector fields with multiple eigenvalues .Edit
Basto-Gonçalves J. Invariant manifolds of a differentiable vector field. Portugal. Math.. 1993;50:497-505.
Basto-Gonçalves J. Controllability in codimension one. J. Differential Equations. 1987;68:1-9.
Basto-Gonçalves J. Linearization of resonant vector fields. Trans. Amer. Math. Soc.. 2010;362:6457-6476.
Basto-Gonçalves J, Cruz I. Analytic $k$-linearizability of some resonant Poisson structures. Lett. Math. Phys.. 1999;49:59-66.Edit
Basto-Gonçalves J. Local controllability of scalar input systems on $3$-manifolds. Systems Control Lett.. 1991;16:349-355.
Basto-Gonçalves J. Nonlinear observability and duality. Systems Control Lett.. 1984;4:97-101.
[2012-38] Basto-Gonçalves J. Local geometry of surfaces in $\mathbf R^4$ .
Basto-Gonçalves J, Cruz I. Analytic linearizability of some resonant vector fields. Proc. Amer. Math. Soc.. 2001;129:2473-2481 (electronic).Edit
[2013-8] Basto-Gonçalves J. Inflection points and asymptotic lines on Lagrangean surfaces .
[2004-5] Basto-Gonçalves J. Linearization of resonant vector fields .
Basto-Gonçalves J. Singularities of Euler equations and implicit Hamilton equations. In: Real and complex singularities ({S}ão {C}arlos, 1994). Vol 333. Longman, Harlow; 1995. 2. p. 203-212p.
Basto-Gonçalves J. Sufficient conditions for local controllability with unbounded controls. SIAM J. Control Optim.. 1987;25:1371-1378.
Basto-Gonçalves J. Symplectic rigidity and flexibility of ellipsoids. Indag. Math. (N.S.). 2013;24:264-278.
Basto-Gonçalves J. Local controllability along a reference trajectory. J. Math. Anal. Appl.. 1991;158:55-62.
Basto-Gonçalves J. Local controllability of nonlinear systems. Systems Control Lett.. 1985;6:213-217.
[2013-21] Bastos R, Moreira N, Reis R. Manipulation of extended regular expressions with derivatives .Edit
Bastos R, Broda S, Machiavelo A, Moreira N, Reis R. On the State Complexity of Partial Derivative Automata for Regular Expressions with Intersection. In: Proceedings of the 18th Int. Workshop on Descriptional Complexity of Formal Systems (DCFS16). Vol 9777. Springer; 2016. 4. p. 45-59p. (LNCS; vol 9777).Edit
Bastos R, Broda S, Machiavelo A, Moreira N. On the Average Complexity of Partial Derivative Automata for Semi-Extended Expressions. Journal of Automata, Languages and Combinatorics. 2017;22:5-28.Edit

Pages