Publications
Some classes of discrete transforms that are generated by matrix linear operators. Vests\=ı Akad. Navuk Belarus\=ı Ser. F\=ız. Mat. Navuk. 1992:20-25, 123.
On the class of Lebedev-Skalskaya type index transforms. Fukuoka Univ. Sci. Rep.. 1994;24:67-81.Edit
[2007-16] On a progress in the Kontorovich-Lebedev transform theory and related integral operators .
New index transforms of the Lebedev–Skalskaya type. Integral Transforms and Special Functions. 2016;27(2):137-152.
A constructive method for constructing integral convolutions. Dokl. Akad. Nauk BSSR. 1990;34:588-591, 666.
An analog of Morgan's theorem for the Kontorovich-Lebedev transform. Adv. Pure Appl. Math.. 2010;1:159-162.Edit
The Titchmarsh integral transformation by the index of a Bessel function. J. Comput. Appl. Math.. 2000;118:353-361.
A Voronoi-type summation formula involving $\sigma_{\rm i\tau(n)$ and index transforms. Integral Transforms Spec. Funct.. 2013;24:98-110.
A real inversion formula for the bilateral Laplace transform. Izv. Nats. Akad. Nauk Armenii Mat.. 2005;40:67-79.
On the half-Hartley transform, its iteration and compositions with Fourier transforms. J. Integral Equations Appl. . 2014;26(4):581-608.
On the Mehler-Fock index transform in $L_p$-space. S\=urikaisekikenky\=usho Kōky\=uroku. 1994:130-144.Edit
[2004-3] Theorems of the Hausdorff-Young and Riesz-Kolmogorov type for the Kontorovich-Lebedev transform and .
Boundedness and inversion properties of certain convolution transforms. J. Korean Math. Soc.. 2003;40:999-1014.
New inversion, convolution and Titchmarsh's theorems for the half-Hilbert transform. Integral Transforms Spec. Funct.. 2014;25:955-968.
On the Lebedev-Skal\cprime skaya transform. Vests\=ı Akad. Navuk Belarus\=ı Ser. F\=ız. Mat. Navuk. 1995:28-35, 124.Edit
Integral convolutions for $H$-transformations. Izv. Vyssh. Uchebn. Zaved. Mat.. 1991:72-79.Edit
On the convolution for the Kontorovich-Lebedev transformation and its applications to integral equations. Dokl. Akad. Nauk BSSR. 1987;31:101-103, 188.
On a new approach to convolution constructions. Internat. J. Math. Math. Sci.. 1993;16:435-448.Edit
[2010-19] A general class of Voronoi’s and Koshliakov-Ramanujan’s summation formulas involving d_k(n) .
The Fourier-Stieltjes transform of Minkowski's $?(x)$ function and an affirmative answer to Salem's problem. C. R. Math. Acad. Sci. Paris. 2011;349:633-636.