Publications

Found 2268 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
[2013-5] Basto-Gonçalves J. The Gauss map for Lagrangean and isoclinic surfaces .
Basto-Gonçalves J. Local controllability of scalar input systems on $3$-manifolds. Systems Control Lett.. 1991;16:349-355.
Basto-Gonçalves J. Nonlinear observability and duality. Systems Control Lett.. 1984;4:97-101.
[2004-5] Basto-Gonçalves J. Linearization of resonant vector fields .
Basto-Gonçalves J, Cruz I. Analytic linearizability of some resonant vector fields. Proc. Amer. Math. Soc.. 2001;129:2473-2481 (electronic).Edit
Basto-Gonçalves J. Singularities of Euler equations and implicit Hamilton equations. In: Real and complex singularities ({S}ão {C}arlos, 1994). Vol 333. Longman, Harlow; 1995. 2. p. 203-212p.
Basto-Gonçalves J. Sufficient conditions for local controllability with unbounded controls. SIAM J. Control Optim.. 1987;25:1371-1378.
Basto-Gonçalves J. Symplectic rigidity and flexibility of ellipsoids. Indag. Math. (N.S.). 2013;24:264-278.
Basto-Gonçalves J. Local controllability along a reference trajectory. J. Math. Anal. Appl.. 1991;158:55-62.
[2004-39] Basto-Gonçalves J, Reis H.. The geometry of quadratic 2x2 systems of conservation laws .Edit
Basto-Gonçalves J. Local controllability of nonlinear systems. Systems Control Lett.. 1985;6:213-217.
[2012-38] Basto-Gonçalves J. Local geometry of surfaces in $\mathbf R^4$ .
Basto-Gonçalves J. Local controllability at critical points and generic systems in $3$-space. J. Math. Anal. Appl.. 1996;201:1-24.
[2013-8] Basto-Gonçalves J. Inflection points and asymptotic lines on Lagrangean surfaces .
Basto-Gonçalves J. Control of a neoclassic economic model. Portugal. Math.. 1988;45:417-428.
Basto-Gonçalves J. Inflection points and asymptotic lines on Lagrangian surfaces. Differential Geom. Appl.. 2014;35:9-29.
Basto-Gonçalves J. Reduction of Hamiltonian systems with symmetry. J. Differential Equations. 1991;94:95-111.
Basto-Gonçalves J. Minimal-dimensional realizations of Hamiltonian control systems. In: Theory and applications of nonlinear control systems ({S}tockholm, 1985). North-Holland, Amsterdam; 1986. 2. p. 233-240p.
Basto-Gonçalves J, Ferreira AC. Normal forms and linearization of resonant vector fields with multiple eigenvalues. J. Math. Anal. Appl.. 2005;301:219-236.Edit
Basto-Gonçalves J. Implicit Hamilton equations. Mat. Contemp.. 1997;12:1-16.
[2009-31] Basto-Gonçalves J. Symplectic rigidity and flexibility of ellipsoids .
Basto-Gonçalves J. Local controllability in $3$-manifolds. Systems Control Lett.. 1990;14:45-49.
Bastos R, Broda S, Machiavelo A, Moreira N. On the Average Complexity of Partial Derivative Automata for Semi-Extended Expressions. Journal of Automata, Languages and Combinatorics. 2017;22:5-28.Edit
Bastos R, Broda S, Machiavelo A, Moreira N, Reis R. On the State Complexity of Partial Derivative Automata for Regular Expressions with Intersection. In: Proceedings of the 18th Int. Workshop on Descriptional Complexity of Formal Systems (DCFS16). Vol 9777. Springer; 2016. 4. p. 45-59p. (LNCS; vol 9777).Edit
[2013-21] Bastos R, Moreira N, Reis R. Manipulation of extended regular expressions with derivatives .Edit

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.