Publications
Queues with server vacations in urban traffic control. In: International Symposium on Applied Stochastic Models and Data Analysis (ASMDA 2005).; 2005. 1. p. 1181-1188p. Edit
[2017-28] On finitely generated submonoids of free groups .
A note on Pérez de Moya's Principios de Geometria (1584). Revue d'histoire des mathématiques . 2008;14 ( fascicule 1 ):113-133.Edit
The algebraic content of Bento Fernandes’s Tratado da arte de arismetica (1555). Historia Mathematica . 2008;35 :190-219.Edit
Rational languages and inverse monoid presentations. Internat. J. Algebra Comput.. 1992;2:187-207.
The homomorphism problem for the free monoid. Discrete Math.. 2002;259:189-200.
On an algorithm to decide whether a free group is a free factor of another. Theor. Inform. Appl.. 2008;42:395-414.Edit
On free inverse monoid languages. RAIRO Inform. Théor. Appl.. 1996;30:349-378.
The homomorphism problem for trace monoids. Theoret. Comput. Sci.. 2003;307:199-215.
Automorphic orbits in free groups: words versus subgroups. Internat. J. Algebra Comput.. 2010;20:561-590.Edit
Recognizable subsets of a group: finite extensions and the abelian case. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS. 2002:195-215.
Renaissance sources of Juan Pérez de Moya’s geometries. Asclepio. Revista de Historia de la Medicina y de la Ciencia. 2013;65 (2)(julio-diciembre ):1-18.Edit
Normal-convex embeddings of inverse semigroups. Glasgow Math. J.. 1993;35:115-121.
Howson’s property for semidirect products of semilattices by groups. Comm. Algebra. 2016;44(6):2482-2494.Edit
Contribuição para o estudo do manuscrito Arte de Marear de Juan Pérez de Moya. LLULL. 2012;35(76):351-379.Edit
Free group languages: rational versus recognizable. Theor. Inform. Appl.. 2004;38:49-67.
[2012-16] Groups and automata: a perfect match .