Publications
About a new class of integral transforms in Hilbert space. Math. Balkanica (N.S.). 1995;9:179-191.
Some classes of discrete transforms that are generated by matrix linear operators. Vests\=ı Akad. Navuk Belarus\=ı Ser. F\=ız. Mat. Navuk. 1992:20-25, 123.
On a new approach to convolution constructions. Internat. J. Math. Math. Sci.. 1993;16:435-448.Edit
A constructive method for constructing integral convolutions. Dokl. Akad. Nauk BSSR. 1990;34:588-591, 666.
[2012-30] On the Yor integral and a system of polynomials related to the Kontorovich-Lebedev transform .
On the new approach to the constructions of the index transforms. Dissertationes Math. (Rozprawy Mat.). 1995;340:321-335.
The Titchmarsh integral transformation by the index of a Bessel function. J. Comput. Appl. Math.. 2000;118:353-361.
An analog of Morgan's theorem for the Kontorovich-Lebedev transform. Adv. Pure Appl. Math.. 2010;1:159-162.Edit
A real inversion formula for the bilateral Laplace transform. Izv. Nats. Akad. Nauk Armenii Mat.. 2005;40:67-79.
On the Weber integral equation and solution to the Weber–Titchmarsh problem. Journal of Mathematical Analysis and Applications. 2018;460(1):400-410.
The hypergeometric approach to integral transforms and convolutions. Vol 287 Kluwer Academic Publishers Group, Dordrecht 1994.Edit
Integral and series transformations via Ramanujan's identities and Salem's type equivalences to the Riemann hypothesis. Integral Transforms Spec. Funct.. 2014;25:255-271.
Boundedness and inversion properties of certain convolution transforms. J. Korean Math. Soc.. 2003;40:999-1014.
The Kontorovich-Lebedev type transforms and their convolutions. In: Complex analysis and generalized functions (Varna, 1991). Publ. House Bulgar. Acad. Sci., Sofia; 1993. 3. p. 348-360p.
On the Lebedev-Skal\cprime skaya transform. Vests\=ı Akad. Navuk Belarus\=ı Ser. F\=ız. Mat. Navuk. 1995:28-35, 124.Edit
Integral convolutions for $H$-transformations. Izv. Vyssh. Uchebn. Zaved. Mat.. 1991:72-79.Edit
The Fourier-Stieltjes transform of Minkowski's $?(x)$ function and an affirmative answer to Salem's problem. C. R. Math. Acad. Sci. Paris. 2011;349:633-636.