Publications
An automata-theoretic approach to the word problem for ω-terms over $\ssfR$. Theoret. Comput. Sci.. 2007;370:131-169.Edit
Incremental DFA Minimisation. RAIRO - Theoretical Informatics and Applications. 2014;48:173-186.Edit
Pseudovariety joins involving $\scr J$-trivial semigroups. Internat. J. Algebra Comput.. 1999;9:99-112.Edit
Improved QT variability quantification by multilead automatic delineation. In: {32nd Annual Conference on Computers in Cardiology}. Vol {32}. {IEEE}; 2005. {. {p. 503-506p. }.Edit
Arfima-Garch Modeling of Hrv: Clinical Application in Acute Brain Injury Springer International Publishing 2017.Edit
Implicit operations on certain classes of semigroups. In: Semigroups and their applications (Chico, Calif., 1986). Reidel, Dordrecht; 1987. 1. p. 1-11p. Edit
José Morgado: in memoriam. Bol. Soc. Port. Mat.. 2004:1-18.Edit
[2017-1] The linear nature of pseudowords .Edit
Free profinite semigroups over semidirect products. Izv. Vyssh. Uchebn. Zaved. Mat.. 1995:3-31.Edit
On the power semigroup of a finite semigroup. Portugal. Math.. 1992;49:295-331.Edit
On Decidability of Intermediate Levels of Concatenation Hierarchies. In: 19th International Conference Developments in Language Theory (DLT 2015). Vol Developments in Language Theory, LNCS 9168. UK, Liverpool: Springer; 2015. 5. p. 58-70p. Edit
New decidable upper bound of the second level in the Straubing-Thérien concatenation hierarchy of star-free languages. Discrete Math. Theor. Comput. Sci.. 2010;12:41-58.Edit
Sur certains systèmes d'équations avec contraintes dans un groupe libre–-addenda. Port. Math. (N.S.). 2001;58:379-387.Edit
Estimation of hedonic responses from descriptive skin sensory data by chi-square minimization. Journal of Sensory Studies. 2006;21:2-19.Edit
Reducibility vs. definability for pseudovarieties of semigroups. International Journal of Algebra and Computation. 2016;26(7):1483-1495.Edit
[2009-39] New decidable upper bound of the second level in the Straubing-Thérien concatenation hierarchy .Edit
The equation $\bf PX=\bf PJ$. In: Proceedings of the International Symposium on the Semigroup Theory and its Related Fields (Kyoto, 1990). Shimane Univ., Matsue; 1990. 1. p. 1-11p. Edit
Decidability and tameness in the theory of finite semigroups. Bull. Iranian Math. Soc.. 2008;34:1-22.Edit
On the decidability of iterated semidirect products with applications to complexity. Proc. London Math. Soc. (3). 2000;80:50-74.Edit