Publications
[2017-1] The linear nature of pseudowords .Edit
A wavelet-based method for assessing fetal cardiac rhythms from abdominal ECGs. In: Computing in Cardiology Conference (CinC), 2013. Spain, Zaragoza: IEEE; 2013. 2. p. 289-292p. Edit
Profinite categories and semidirect products. J. Pure Appl. Algebra. 1998;123:1-50.Edit
The algebra of implicit operations. Algebra Universalis. 1989;26:16-32.Edit
Profinite groups associated with weakly primitive substitutions. Fundam. Prikl. Mat.. 2005;11:13-48.Edit
A classification of aperiodic power monoids. J. Algebra. 1994;170:355-387.Edit
Tameness of some locally trivial pseudovarieties. Comm. Algebra. 2003;31:61-77.Edit
Iterated Kantorovich versus Kulkarni method for Fredholm integral equations. Vol Integral Methods in Science and Engineering. Vol. 2: Practical Applications Italy, Padova: Birkhäuser Basel 2017.Edit
Hyperdecidability of pseudovarieties of orthogroups. Glasg. Math. J.. 2001;43:67-83.Edit
Complete kappa-reducibility of pseudovarieties of the form DRH. International Journal of Algebra and Computation. 2017;27(02):189-236.Edit
Overlapping of words in rational languages. In: Combinatorics on words (Waterloo, Ont., 1982). Academic Press, Toronto, ON; 1983. 1. p. 119-131p. Edit
[2006-19] Complete reducibility of pseudovarieties .Edit
On direct product decompositions of finite $\scr J$-trivial semigroups. Internat. J. Algebra Comput.. 1991;1:329-337.Edit
A counterexample to a conjecture concerning concatenation hierarchies. Inform. Process. Lett.. 2009;110:4-7.Edit
Hyperdecidable pseudovarieties and the calculation of semidirect products. Internat. J. Algebra Comput.. 1999;9:241-261.Edit
[2017-9] Towards a pseudoequational proof theory .Edit
Semidirectly closed pseudovarieties of locally trivial semigroups. Semigroup Forum. 1990;40:315-323.Edit
Complete reducibility of systems of equations with respect to $\ssf R$. Port. Math. (N.S.). 2007;64:445-508.Edit
A syntactical proof of locality of DA. Internat. J. Algebra Comput.. 1996;6:165-177.Edit
Some pseudovariety joins involving the pseudovariety of finite groups. Semigroup Forum. 1988;37:53-57.Edit
The equational theory of ω-terms for finite $\scr R$-trivial semigroups. In: Semigroups and languages. World Sci. Publ., River Edge, NJ; 2004. 1. p. 1-22p. Edit
On the equation $\bf V\ast\bf G=\scr E\,\bf V$. J. Pure Appl. Algebra. 2002;166:1-28.Edit