Publications
Multidimensional Kontorovich-Lebedev transforms. Integral Transforms Spec. Funct.. 2011;22:123-141.
A general approach to the theory of integral transforms with respect to an index. Izv. Vyssh. Uchebn. Zaved. Mat.. 1986:77-79, 84.
[2011-15] A convolution operator related to the generalized Mehler-Fock and Kontorovich-Lebedev transforms .Edit
On the Mehler-Fock index transform in $L_p$-space. S\=urikaisekikenky\=usho Kōky\=uroku. 1994:130-144.Edit
New summation and transformation formulas of the Poisson, Müntz, Möbius and Voronoi type. Integral Transforms Spec. Functions. 2015;26(10):768-795.
New inversion, convolution and Titchmarsh's theorems for the half-Hilbert transform. Integral Transforms Spec. Funct.. 2014;25:955-968.
Eigenfunctions and fundamental solutions of the fractional two-parameter Laplacian. Int. J. Math. Math. Sci.. 2010:Art. ID 541934, 18.
Certain isometries related to the bilateral Laplace transform. Math. Model. Anal.. 2006;11:331-346.
[2004-36] Lp-Boundedness of the general index transforms .
On a progress in the Kontorovich-Lebedev transform theory and related integral operators. Integral Transforms Spec. Funct.. 2008;19:509-534.
On the least values of $L_p$-norms for the Kontorovich-Lebedev transform and its convolution. J. Approx. Theory. 2004;131:231-242.
On a new approach to convolution constructions. Internat. J. Math. Math. Sci.. 1993;16:435-448.Edit
New index transforms of the Lebedev–Skalskaya type. Integral Transforms and Special Functions. 2016;27(2):137-152.
On the $L_p$-theorems for index transforms. S\=urikaisekikenky\=usho Kōky\=uroku. 1995:72-83.Edit
Corrigendum to the note ``The Fourier-Stieltjes transform of Minkowski's $?(x)$ function and an affirmative answer to Salem's problem'' [C. R. Acad. Sci. Paris, Ser. I 349 (11–12) (2011) 633–636] [\refcno 2817381]. C. R. Math. Acad. Sci. Paris. 2012;350:147.
On the new approach to the constructions of the index transforms. Dissertationes Math. (Rozprawy Mat.). 1995;340:321-335.
Index transforms associated with products of Whittaker's functions. J. Comput. Appl. Math.. 2002;148:419-427.
[2009-24] On the Watson L2-theory for index transforms .