Publications
Effects of pitch size and skill level on tactical behaviours of Association Football players during small-sided and conditioned games. International Journal of Sports Science & Coaching. 2014;9:993-1006.Edit
On an algorithm to decide whether a free group is a free factor of another. Theor. Inform. Appl.. 2008;42:395-414.Edit
[2012-16] Groups and automata: a perfect match .
On free inverse monoid languages. RAIRO Inform. Théor. Appl.. 1996;30:349-378.
The homomorphism problem for trace monoids. Theoret. Comput. Sci.. 2003;307:199-215.
Recognizable subsets of a group: finite extensions and the abelian case. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS. 2002:195-215.
Automorphic orbits in free groups: words versus subgroups. Internat. J. Algebra Comput.. 2010;20:561-590.Edit
The algebraic content of Bento Fernandes’s Tratado da arte de arismetica (1555). Historia Mathematica . 2008;35 :190-219.Edit
a partitional clustering algorithm validated by a clustering tendency index based on graph theory. pattern recognition. 2006;39:776-788.Edit
Normal-convex embeddings of inverse semigroups. Glasgow Math. J.. 1993;35:115-121.
Field dimension and skill level constrain team tactical behaviours in small-sided and conditioned games in football. Journal of sports sciences. 2014;32:1888-1896.Edit
Luis Inacio Woodhouse (1857-1927). Vol 1. U. Porto Edições ed. 2018.Edit
Free group languages: rational versus recognizable. Theor. Inform. Appl.. 2004;38:49-67.
On the circulation of algebraic knowledge in the Iberian península: the sources of Pérez de Moya's Tratado de Arithmetica (1573). Revue d'histoire des mathématiques . 2016;2:145-184.Edit
Extensions and submonoids of automatic monoids. Theoret. Comput. Sci.. 2002;289:727-754.Edit
A note on Pérez de Moya's Principios de Geometria (1584). Revue d'histoire des mathématiques . 2008;14 ( fascicule 1 ):113-133.Edit
Renaissance sources of Juan Pérez de Moya’s geometries. Asclepio. Revista de Historia de la Medicina y de la Ciencia. 2013;65 (2)(julio-diciembre ):1-18.Edit
On a class of automata groups generalizing lamplighter groups. Internat. J. Algebra Comput.. 2005;15:1213-1234.Edit
On the semilattice of idempotents of a free inverse monoid. Proc. Edinburgh Math. Soc. (2). 1993;36:349-360.