Publications
A local but not global attractor for a $\Bbb Z_n$-symmetric map. J. Singul.. 2012;6:1-14.
Global dynamics for symmetric planar maps. Discrete Contin. Dyn. Syst.. 2013;33:2241-2251.
A local but not global attractor for a Z_n-symmetric map. J. Singul.. 2012;6:1-14.
[2016-12] Global Saddles for Planar Maps .
Global saddles for planar maps. Journal of Dynamics and Differential Equations. In Press.
[2012-12] Global Dynamics for Symmetric Planar Maps .
The discrete Markus-Yamabe problem for symmetric planar polynomial maps. Indag. Math. (N.S.). 2012;23:603-608.
Delivery of pharmaceutics to bone: nanotechnologies, high-throughput processing and in silico mathematical models. EUROPEAN CELLS & MATERIALS. 2016;30:355-381.Edit
A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems. Mathematical Methods in the Applied Sciences. 2016;39(13):3640-3649.Edit
Hunter’s Lemma for Forest Algebras. In: The International Conference on 46th Annual Iranian Mathematics. Iran, Yazd. 1. p. 1307-1310p. Edit
On Pseudovarieties of Forest Algebras. International Journal of Foundations of Computer Science.Edit
On power varieties of semigroups. J. Algebra. 1989;120:1-17.Edit
Tameness of pseudovariety joins involving R. Monatsh. Math.. 2005;146:89-111.Edit
The pseudovariety $\bf J$ is hyperdecidable. RAIRO Inform. Théor. Appl.. 1997;31:457-482.Edit
Errors and grids for projected weakly singular integral equations. International Journal of Pure and Applied Mathematics . 2013;89:203-213.Edit
Exploring QT variability dependence from heart rate in coma and brain death on pediatric patients. In: Computing in Cardiology Conference (CinC), 2013.; 2013. 6. p. 61-64p. Edit
Dynamics of finite semigroups. In: Semigroups, algorithms, automata and languages (Coimbra, 2001). World Sci. Publ., River Edge, NJ; 2002. 2. p. 269-292p. Edit
Reduced factorizations in free profinite groups and join decompositions of pseudovarieties. Internat. J. Algebra Comput.. 1994;4:375-403.Edit
On fixed points of the lower set operator. Int. J. Algebra Comput.. 2015;25(1-2):259-292.Edit