Publications

Found 2268 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Basto-Gonçalves J. Local controllability of nonlinear systems. Systems Control Lett.. 1985;6:213-217.
[2012-38] Basto-Gonçalves J. Local geometry of surfaces in $\mathbf R^4$ .
Basto-Gonçalves J. Local controllability at critical points and generic systems in $3$-space. J. Math. Anal. Appl.. 1996;201:1-24.
[2013-8] Basto-Gonçalves J. Inflection points and asymptotic lines on Lagrangean surfaces .
Basto-Gonçalves J. Control of a neoclassic economic model. Portugal. Math.. 1988;45:417-428.
Basto-Gonçalves J. Inflection points and asymptotic lines on Lagrangian surfaces. Differential Geom. Appl.. 2014;35:9-29.
Basto-Gonçalves J. Reduction of Hamiltonian systems with symmetry. J. Differential Equations. 1991;94:95-111.
[2004-6] Basto-Gonçalves J, Ferreira AC. Normal forms and linearization of resonant vector fields with multiple eigenvalues .Edit
Basto-Gonçalves J. Minimal-dimensional realizations of Hamiltonian control systems. In: Theory and applications of nonlinear control systems ({S}tockholm, 1985). North-Holland, Amsterdam; 1986. 2. p. 233-240p.
Basto-Gonçalves J, Ferreira AC. Normal forms and linearization of resonant vector fields with multiple eigenvalues. J. Math. Anal. Appl.. 2005;301:219-236.Edit
Basto-Gonçalves J. Implicit Hamilton equations. Mat. Contemp.. 1997;12:1-16.
Basto-Gonçalves J. Local controllability in $3$-manifolds. Systems Control Lett.. 1990;14:45-49.
Basto-Gonçalves J. Local controllability of nonlinear systems on surfaces. Mat. Apl. Comput.. 1993;12:33-52.
[2004-5] Basto-Gonçalves J. Linearization of resonant vector fields .
Basto-Gonçalves J. Realization theory for Hamiltonian systems. SIAM J. Control Optim.. 1987;25:63-73.
Basto-Gonçalves J, Reis H.. The geometry of $2\times 2$ systems of conservation laws. Acta Appl. Math.. 2005;88:269-329.Edit
Basto-Gonçalves J. Second-order conditions for local controllability. Systems Control Lett.. 1998;35:287-290.
Basto-Gonçalves J. Geometric conditions for local controllability. J. Differential Equations. 1991;89:388-395.
Basto-Gonçalves J, Reis H. The geometry of 2×2 systems of conservation laws. Acta Applicandae Mathematicae. 2005;88(3):269-329.
Basto-Gonçalves J. Equivalence of gradient systems. Portugal. Math.. 1981;40:263-277 (1985).
Basto-Gonçalves J. Invariant manifolds of a differentiable vector field. Portugal. Math.. 1993;50:497-505.
[2004-39] Basto-Gonçalves J, Reis H.. The geometry of quadratic 2x2 systems of conservation laws .Edit
Bastos R, Broda S, Machiavelo A, Moreira N. On the Average Complexity of Partial Derivative Automata for Semi-Extended Expressions. Journal of Automata, Languages and Combinatorics. 2017;22:5-28.Edit
Bastos R, Broda S, Machiavelo A, Moreira N, Reis R. On the State Complexity of Partial Derivative Automata for Regular Expressions with Intersection. In: Proceedings of the 18th Int. Workshop on Descriptional Complexity of Formal Systems (DCFS16). Vol 9777. Springer; 2016. 4. p. 45-59p. (LNCS; vol 9777).Edit
[2013-21] Bastos R, Moreira N, Reis R. Manipulation of extended regular expressions with derivatives .Edit

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.