Publications
Semigroups whose idempotents form a subsemigroup. Math. Proc. Cambridge Philos. Soc.. 1992;111:241-253.Edit
Relatively free profinite monoids: an introduction and examples. In: Semigroups, formal languages and groups (York, 1993). Vol 466. Kluwer Acad. Publ., Dordrecht; 1995. 7. p. 73-117p. (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.; vol 466).Edit
Reduced factorizations in free profinite groups and join decompositions of pseudovarieties. Internat. J. Algebra Comput.. 1994;4:375-403.Edit
Profinite categories and semidirect products. J. Pure Appl. Algebra. 1998;123:1-50.Edit
Free profinite semigroups over semidirect products. Izv. Vyssh. Uchebn. Zaved. Mat.. 1995:3-31.Edit
Free profinite $\scr R$-trivial monoids. Internat. J. Algebra Comput.. 1997;7:625-671.Edit
On finite-index extensions of subgroups of free groups. J. Group Theory. 2010;13:365-381.Edit
Automorphic orbits in free groups: words versus subgroups. Internat. J. Algebra Comput.. 2010;20:561-590.Edit
On an algorithm to decide whether a free group is a free factor of another. Theor. Inform. Appl.. 2008;42:395-414.Edit