Publications
Evidence-Based Decision About Test Scoring Rules in Clinical Anatomy Multiple-Choice Examinations. Anatomical Sciences Education. 2015;8(3).Edit
Avaliação temporal do conhecimento matemático dos alunos da FCUP à entrada do ensino superior - Boletim da Sociedade Portuguesa de Estatística 2016.Edit
Assessment of the general public's knowledge about rheumatic diseases: Evidence from a Portuguese population-based survey. BMC Musculoskeletal Disorders. 2010;11.Edit
Indirect calibration between clinical observers - Application to the New York Heart Association functional classification system. BMC Research Notes. 2011;4.Edit
Two-dimensional simulation of the Navier-Stokes equations for laminar and turbulent flow around a heated square cylinder with forced convection. Applied Mathematics. 2018;9(291-312).Edit
An Innovative Degree in Mathematical Engineering in the Portuguese Education System: Submission Process and Evaluation. In: 1st International Conference of the Portuguese Society for Engineering Education – CISPEE. Vol Proceedings of the 1st International Conference of the Portuguese Society for Engineering Education – CISPEE. Porto, Portugal: IEEE; 2013. 1. p. 1-10p. Edit
Stokes drift for inertial particles transported by water waves. Europhysics Letters. 2013;102(1):14003: 1-5.Edit
An overview of the computational aspects of nonunique factorization invariants. In: Multiplicative ideal theory and factorization theory. Vol 170. Springer, [Cham]; 2016. 1. p. 159-181p. (Springer Proc. Math. Stat.; vol 170).Edit
On Leibniz rules involving generalized fractional calculus operators. Fukuoka Univ. Sci. Rep.. 1996;26:63-78.Edit
On the theory of convolution integrals for $G$-transforms. Fukuoka Univ. Sci. Rep.. 1991;21:181-193.Edit
«PENTAGONOS, Y OTRAS FIGURAS DE MUCHOS LADOS» NO LIBRO DE ALGEBRA DE PEDRO NUNES. Vol Anais/Actas do 6º Encontro Luso-Brasileiro de História da Matemática. Brasil, S. João del Rey: Sérgio Nobre, Fábio Bertato, Luis Saraiva; 2014. 3. p. 331-350p. Edit
The set of solutions of a proportionally modular Diophantine inequality. J. Number Theory. 2008;128:453-467.Edit
Numerical semigroups. Vol 20 Springer, New York 2009.Edit
On Cohen-Macaulay and Gorenstein simplicial affine semigroups. Proc. Edinburgh Math. Soc. (2). 1998;41:517-537.Edit
Correction to: ``Modular Diophantine inequalities and numerical semigroups'' [Pacific J. Math. \bf 218 (2005), no. 2, 379–398; \refcno 2218353]. Pacific J. Math.. 2005;220:199.Edit
Numerical semigroups with maximal embedding dimension. Int. J. Commut. Rings. 2003;2:47-53.Edit
On complete intersection affine semigroups. Comm. Algebra. 1995;23:5395-5412.Edit
Saturated numerical semigroups. Houston J. Math.. 2004;30:321-330 (electronic).Edit
On the structure of simplicial affine semigroups. Proc. Roy. Soc. Edinburgh Sect. A. 2000;130:1017-1028.Edit
Every numerical semigroup is one half of infinitely many symmetric numerical semigroups. Comm. Algebra. 2008;36:2910-2916.Edit
$k$-factorized elements in telescopic numerical semigroups. In: Arithmetical properties of commutative rings and monoids. Vol 241. Chapman & Hall/CRC, Boca Raton, FL; 2005. 2. p. 260-271p. (Lect. Notes Pure Appl. Math.; vol 241).Edit
On normal affine semigroups. Linear Algebra Appl.. 1999;286:175-186.Edit