Publications
Found 82 results
Author [ Title] Type Year Filters: Author is Labouriau, Isabel Salgado [Clear All Filters]
[2015-10] Global bifurcations close to symmetry .Edit
Global bifurcations close to symmetry. Journal of Mathematical Analysis and Applications. 2016;444(1):648-671.Edit
[2012-12] Global Dynamics for Symmetric Planar Maps .
Global dynamics for symmetric planar maps. Discrete Contin. Dyn. Syst.. 2013;33:2241-2251.
[2012-11] Global Generic Dynamics Close to Symmetry .Edit
Global generic dynamics close to symmetry. J. Differential Equations. 2012;253:2527-2557.Edit
[2016-12] Global Saddles for Planar Maps .
Global saddles for planar maps. Journal of Dynamics and Differential Equations. In Press.
A heteroclinic network in mode interaction with symmetry. Dyn. Syst.. 2010;25:359-396.Edit
[2015-4] Hexagonal Projected Symmetries .Edit
Hexagonal Projected Symmetries. Acta Crystallographica Section A: Foundations and Advances. 2015;71(5):549-558.Edit
Hopf bifurcation with tetrahedral and octahedral symmetry. SIAM Journal of Applied Dynamical Systems. 2016;15(1):106-124.Edit
Instant chaos is chaos in slow motion. J. Math. Anal. Appl.. 1996;199:138-148.Edit
Instant chaos is chaos in slow motionLabouriau IS, Dias AP. Instant chaos is chaos in slow motion. J. Math. Anal. Appl.. 1996;199:138-148. J. Math. Anal. Appl.. 1996;199:138-148.Edit
[2004-27] Invariants for bifurcations .Edit
Invariants for bifurcations. Houston J. Math.. 2006;32:445-458.Edit
[2015-23] Limit cycles for a class of $\mathbb{Z}_{2n}-$equivariant systems without infinite equilibria .Edit
[2013-12] Limit cycles for a class of quintic $\mathbbZ_6-$equivariant systems without infinite critical poi .Edit
Limit cycles for a class of quintic Z_6-equivariant systems without infinite critical points. Bulletin of the Belgian Mathematical Society - Simon Stevin. 2014;(21):841-857.Edit
Limit cycles for a class of Z_2n-equivariant systems without infinite equilibria. Electronic Journal of Differential Equations. 2016;122:1-12.Edit
A local but not global attractor for a $\Bbb Z_n$-symmetric map. J. Singul.. 2012;6:1-14.
A local but not global attractor for a Z_n-symmetric map. J. Singul.. 2012;6:1-14.
Loss of synchronization in partially coupled Hodgkin-Huxley equations. Bull. Math. Biol.. 2004;66:539-557.Edit
Note on the unfolding of degenerate Hopf bifurcation germs. J. Differential Equations. 1985;57:436-439.