Publications

Found 2268 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Bessa M, Rocha J. On $C^1$-robust transitivity of volume-preserving flows. J. Differential Equations. 2008;245:3127-3143.
[2005-31] Bessa M. Dynamics of generic 2-dimensional linear differential systems .
[2005-40] Bessa M. The Lyapunov exponents of zero divergence 3-dimensional vector fields .
[2008-24] Bessa M. Are there chaotic maps in the sphere? .
Bessa M, Rodrigues A. A Dichotomy in Area-Preserving Reversible Maps. Qual. Theory Dyn. Syst.. 2016;15(2):309-326.Edit
Bessa M, Rocha J. Denseness of ergodicity for a class of volume-preserving flows. Port. Math.. 2011;68:1-17.
[2015-38] Bessa M, Ferreira C, Rocha J, Varandas P. Generic Hamiltonian dynamics, .Edit
[2007-10] Bessa M, Dias JL. Generic dynamics of 4-dimensional C² Hamiltonian systems .Edit
[2008-8] Bessa M. Generic incompressible flows are topological mixing .
[2007-20] Bessa M, Duarte P. Abundance of elliptic dynamics on conservative 3-flows .Edit
Bessa M, Rocha J. Contributions to the geometric and ergodic theory of conservative flows. Ergodic Theory Dynam. Systems. 2013;33:1709-1731.
[2010-8] Bessa M, Varandas P. On the entropy of conservative flows .
[2007-5] Bessa M, Rocha J. Denseness of ergodicity for a class of partially hyperbolic volume-preserving flows .Edit
[2008-3] Bessa M, Dias JL. Hamiltonian elliptic dynamics on symplectic 4-manifolds .Edit
Bessa M, Rocha J. Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows. J. Differential Equations. 2009;247:2913-2923.
Bessa M. Homeomorfismos do plano sem pontos fixos 2005.
Bessa M, Rocha J. A remark on the topological stability of symplectomorphisms. Appl. Math. Lett.. 2012;25:163-165.
Bessa M, Rocha J. Removing zero Lyapunov exponents in volume-preserving flows. Nonlinearity. 2007;20:1007-1016.
[2014-8] Bessa M, Rodrigues A. A dichotomy in area-preserving reversible maps .Edit
Bessa M., Ferreira C., Rocha J., Varandas P.. Generic Hamiltonian dynamics. J. Dynam. Differential Equations. 2017;29:203-218.Edit
Bessa M, Rocha J. Three-dimensional conservative star flows are Anosov. Discrete Contin. Dyn. Syst.. 2010;26:839-846.
Bessa M, Varandas P. Trivial and Simple Spectrum for SL(d,R) Cocycles with Free Base and Fiber Dynamics. Acta Mathematica Sinica. 2015; 31(7):1113-1122.
Bessa M, Rocha J, Torres MJ. Hyperbolicity and stability for Hamiltonian flows. J. Differential Equations. 2013;254:309-322.Edit
[2006-36] Bessa M, Rocha J. Removing zero Lyapunov exponents in volume-preserving flows .Edit
Bessa M, Rocha J. On the fundamental regions of a fixed point free conservative Hénon map. Bull. Aust. Math. Soc.. 2008;77:37-48.

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.