Publications
On the topological semigroup of equational classes of finite functions under composition. J. of Mult.-Valued Logic & Soft Computing. 2017;28(1):5-28.Edit
McCammond's normal forms for free aperiodic semigroups revisited. LMS J. Comput. Math.. 2015;18:130-147.Edit
The join of the pseudovarieties of $\scr R$-trivial and $\scr L$-trivial monoids. J. Pure Appl. Algebra. 1989;60:129-137.Edit
Subword complexity of profinite words and subgroups of free profinite semigroups. Internat. J. Algebra Comput.. 2006;16:221-258.Edit
Generalized varieties of commutative and nilpotent semigroups. Semigroup Forum. 1984;30:77-98.Edit
On a problem of Brzozowski and Fich. In: Semigroups and applications (St. Andrews, 1997). World Sci. Publ., River Edge, NJ; 1998. 1. p. 1-17p. Edit
The mathematician Hugo Ribeiro. Portugal. Math.. 1995;52:1-14.Edit
Semidirect products with the pseudovariety of all finite groups. In: Words, languages & combinatorics, III (Kyoto, 2000). World Sci. Publ., River Edge, NJ; 2003. 1. p. 1-21p. Edit
Counting factors in words, semidirect products and power semigroups. In: Words, languages and combinatorics (Kyoto, 1990). World Sci. Publ., River Edge, NJ; 1992. 1. p. 1-15p. Edit
Semidirect product with an order-computable pseudovariety and tameness. Semigroup Forum. 2010;81:26-50.Edit
Globals of pseudovarieties of commutative semigroups: the finite basis problem, decidability and gaps. Proc. Edinb. Math. Soc. (2). 2001;44:27-47.Edit
[2004-18] The globals of pseudovarieties of ordered semigroups containing $B_2$ and an application to a proble .Edit
Complete κ-reducibility of pseudovarieties of the form DRH. International Journal of Algebra and Computation. 2017;27(2):189-235.Edit
An elementary proof that finite groups are projectively torsion-free. Portugal. Math.. 1990;47:437-444.Edit
Description and analysis of a bottom-up DFA minimization algorithm. Inform. Process. Lett.. 2008;107:52-59.Edit
Power pseudovarieties of semigroups. I, II. Semigroup Forum. 1986;33:357-373, 375-390.Edit
On Decidability of Intermediate Levels of Concatenation Hierarchies. In: 19th International Conference Developments in Language Theory (DLT 2015). Vol Developments in Language Theory, LNCS 9168. UK, Liverpool: Springer; 2015. 5. p. 58-70p. Edit
Power exponents of aperiodic pseudovarieties. Semigroup Forum. 1999;59:18-32.Edit
Free profinite $\scr R$-trivial monoids. Internat. J. Algebra Comput.. 1997;7:625-671.Edit
Arfima-Garch Modeling of Hrv: Clinical Application in Acute Brain Injury Springer International Publishing 2017.Edit
The ω-inequality problem for concatenation hierarchies of star-free languages. Forum Mathematicum. 2018;30:663-679.Edit
On pseudovarieties of monoids. In: Semigroups, theory and applications (Oberwolfach, 1986). Vol 1320. Springer, Berlin; 1988. 1. p. 11-17p. (Lecture Notes in Math.; vol 1320).Edit
The pseudovariety of semigroups of triangular matrices over a finite field. Theor. Inform. Appl.. 2005;39:31-48.Edit