Publications
Strongly taut finitely generated monoids. Monatsh. Math.. 2008;155:119-124.Edit
Presentations of finitely generated cancellative monoids and natural solutions of linear systems of equations. In: Fifth Conference on Discrete Mathematics and Computer Science (Spanish). Vol 23. Univ. Valladolid, Secr. Publ. Intercamb. Ed., Valladolid; 2006. 2. p. 217-224p. (Ciencias (Valladolid); vol 23).Edit
Presentations of finitely generated cancellative commutative monoids and nonnegative solutions of systems of linear equations. Discrete Appl. Math.. 2006;154:1947-1959.Edit
On the number of $\ssfL$-shapes in embedding dimension four numerical semigroups. Discrete Math.. 2015;338:2168-2178.Edit
On the generalized Feng-Rao numbers of numerical semigroups generated by intervals. Math. Comp.. 2013;82:1813-1836.Edit
Elements in a numerical semigroup with factorizations of the same length. Canad. Math. Bull.. 2011;54:39-43.Edit
Denumerants of 3-numerical semigroups. In: Conference on Discrete Mathematics and Computer Science (Spanish). Vol 46. Elsevier Sci. B. V., Amsterdam; 2014. 3. p. 3-10p. (Electron. Notes Discrete Math.; vol 46).Edit
Delta sets for symmetric numerical semigroups with embedding dimension three. Aequationes Math.. 2017;91:579-600.Edit
On the delta set and the Betti elements of a BF-monoid. Arab. J. Math. (Springer). 2012;1:53-61.Edit
The catenary and tame degree of numerical monoids. Forum Math.. 2009;21:117-129.Edit
The catenary and tame degree in finitely generated commutative cancellative monoids. Manuscripta Math.. 2006;120:253-264.Edit
An algorithm to compute the primitive elements of an embedding dimension three numerical semigroup. In: Conference on Discrete Mathematics and Computer Science (Spanish). Vol 46. Elsevier Sci. B. V., Amsterdam; 2014. 1. p. 185-192p. (Electron. Notes Discrete Math.; vol 46).Edit