Publications

Found 32 results
[ Author(Asc)] Title Type Year
Filters: Author is I.S. Labouriau  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Labouriau IS, Alves-Pinto C. Loss of synchronization in partially coupled Hodgkin-Huxley equations. Bull. Math. Biol.. 2004;66:539-557.Edit
Labouriau IS. Degenerate Hopf bifurcation and nerve impulse. II. SIAM J. Math. Anal.. 1989;20:1-12.
Labouriau IS, Rodrigues AA. On Takens Last Problem: tangencies and time averages near heteroclinic networks. Nonlinearity . 2017;30(5):1876-1910.Edit
[2013-2] Labouriau IS, Rodrigues AA. Partial symmetry breaking and heteroclinic tangencies .Edit
Labouriau IS, Ruas MA. Invariants for bifurcations. Houston J. Math.. 2006;32:445-458.Edit
[2015-10] Labouriau IS, Rodrigues AA. Global bifurcations close to symmetry .Edit
[2004-27] Labouriau IS, Ruas MA. Invariants for bifurcations .Edit
Labouriau IS, Pinto PR. The geometry of Hopf and saddle-node bifurcations for waves of Hodgkin-Huxley type. In: Real and complex singularities. Vol 380. Cambridge Univ. Press, Cambridge; 2010. 2. p. 229-245p. Edit
Labouriau IS, Dias AP. Instant chaos is chaos in slow motion. J. Math. Anal. Appl.. 1996;199:138-148.Edit
Labouriau IS, Rodrigues AA. On Takens' Last Problem: tangencies and time averages near heteroclinic networks. Nonlinearity. 2017;30:1876-1910.Edit
[2012-11] Labouriau IS, Rodrigues AA. Global Generic Dynamics Close to Symmetry .Edit
Labouriau IS, Pinho EM. Symmetries of projected wallpaper patterns. Math. Proc. Cambridge Philos. Soc.. 2006;141:421-441.Edit
Labouriau IS, Dias AP. Instant chaos is chaos in slow motionLabouriau IS, Dias AP. Instant chaos is chaos in slow motion. J. Math. Anal. Appl.. 1996;199:138-148. J. Math. Anal. Appl.. 1996;199:138-148.Edit
Labouriau IS, Murza A.. Periodic solutions in an array of coupled FitzHugh-Nagumo cells. J. Math. Anal. Appl.. 2014;412:29-40.Edit
Labouriau IS, Rodrigues AA. Global generic dynamics close to symmetry. J. Differential Equations. 2012;253:2527-2557.Edit
Labouriau IS, Ruas MA. Singularities of equations of Hodgkin-Huxley type. Dynam. Stability Systems. 1996;11:91-108.Edit
Labouriau IS, Rodrigues A.. Dense heteroclinic tangencies near a Bykov cycle. Journal of Differential Equations. 2015; 259(11):5875-5902.
[2006-42] Labouriau IS, R.F.Pinto P. The geometry of Hopf and saddle-node bifurcations for waves of Hodgkin-Huxley type .Edit
Labouriau IS, Pinho EM. Projected wallpaper patterns. In: Real and complex singularities. Birkhäuser, Basel; 2007. 2. p. 209-217p. (Trends Math.).Edit
Labouriau IS. Note on the unfolding of degenerate Hopf bifurcation germs. J. Differential Equations. 1985;57:436-439.
Labouriau IS, Murza A.. Limit cycles for a class of Z_2n-equivariant systems without infinite equilibria. Electronic Journal of Differential Equations. 2016;122:1-12.Edit
Labouriau IS, Rodrigues AA. Partial symmetry breaking and heteroclinic tangencies. In: Progress and challenges in dynamical systems. Vol 54. Springer, Heidelberg; 2013. 2. p. 281-299p. Edit
Labouriau IS, Rodrigues HM. Synchronization of coupled equations of Hodgkin-Huxley type. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.. 2003;10:463-476.Edit
Labouriau IS, Murza AC. Hopf bifurcation with tetrahedral and octahedral symmetry. SIAM Journal of Applied Dynamical Systems. 2016;15(1):106-124.Edit
[2005-11] Labouriau IS, Pinho EM. Projected Wallpaper Patterns .Edit

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.