Publications
The oversemigroups of a numerical semigroup. Semigroup Forum. 2003;67:145-158.Edit
Proportionally modular Diophantine inequalities. J. Number Theory. 2003;103:281-294.Edit
Arf numerical semigroups. J. Algebra. 2004;276:3-12.Edit
Atomic commutative monoids and their elasticity. Semigroup Forum. 2004;68:64-86.Edit
Every positive integer is the Frobenius number of a numerical semigroup with three generators. Math. Scand.. 2004;94:5-12.Edit
Fundamental gaps in numerical semigroups. J. Pure Appl. Algebra. 2004;189:301-313.Edit
Fundamental gaps in numerical semigroups with respect to their multiplicity. Acta Math. Sin. (Engl. Ser.). 2004;20:629-646.Edit
Numerical semigroups with embedding dimension three. Arch. Math. (Basel). 2004;83:488-496.Edit
Saturated numerical semigroups. Houston J. Math.. 2004;30:321-330 (electronic).Edit
Correction to: ``Modular Diophantine inequalities and numerical semigroups'' [Pacific J. Math. \bf 218 (2005), no. 2, 379–398; \refcno 2218353]. Pacific J. Math.. 2005;220:199.Edit
$k$-factorized elements in telescopic numerical semigroups. In: Arithmetical properties of commutative rings and monoids. Vol 241. Chapman & Hall/CRC, Boca Raton, FL; 2005. 2. p. 260-271p. (Lect. Notes Pure Appl. Math.; vol 241).Edit
Modular Diophantine inequalities and numerical semigroups. Pacific J. Math.. 2005;218:379-398.Edit
Numerical semigroups with a monotonic Apéry set. Czechoslovak Math. J.. 2005;55(130):755-772.Edit
Pseudo-symmetric numerical semigroups with three generators. J. Algebra. 2005;291:46-54.Edit
The catenary and tame degree in finitely generated commutative cancellative monoids. Manuscripta Math.. 2006;120:253-264.Edit
On the Frobenius number of a proportionally modular Diophantine inequality. Port. Math. (N.S.). 2006;63:415-425.Edit
Numerical semigroups with maximal embedding dimension [\refcno 2056070]. In: Focus on commutative rings research. Nova Sci. Publ., New York; 2006. 4. p. 47-53p. Edit
Presentations of finitely generated cancellative commutative monoids and nonnegative solutions of systems of linear equations. Discrete Appl. Math.. 2006;154:1947-1959.Edit
Presentations of finitely generated cancellative monoids and natural solutions of linear systems of equations. In: Fifth Conference on Discrete Mathematics and Computer Science (Spanish). Vol 23. Univ. Valladolid, Secr. Publ. Intercamb. Ed., Valladolid; 2006. 2. p. 217-224p. (Ciencias (Valladolid); vol 23).Edit
Every numerical semigroup is one half of a symmetric numerical semigroup. Proc. Amer. Math. Soc.. 2008;136:475-477 (electronic).Edit
Every numerical semigroup is one half of infinitely many symmetric numerical semigroups. Comm. Algebra. 2008;36:2910-2916.Edit
Modular Diophantine inequalities and rotations of numerical semigroups. J. Aust. Math. Soc.. 2008;84:315-328.Edit
Numerical semigroups having a Toms decomposition. Canad. Math. Bull.. 2008;51:134-139.Edit
The set of solutions of a proportionally modular Diophantine inequality. J. Number Theory. 2008;128:453-467.Edit
Strongly taut finitely generated monoids. Monatsh. Math.. 2008;155:119-124.Edit