Publications
Numerical semigroups with maximal embedding dimension [\refcno 2056070]. In: Focus on commutative rings research. Nova Sci. Publ., New York; 2006. 4. p. 47-53p. Edit
Fundamental gaps in numerical semigroups with respect to their multiplicity. Acta Math. Sin. (Engl. Ser.). 2004;20:629-646.Edit
Ideals of finitely generated commutative monoids. Semigroup Forum. 2003;66:305-322.Edit
How to check if a finitely generated commutative monoid is a principal ideal commutative monoid. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews). ACM, New York; 2000. 2. p. 288-291p. (electronic).Edit
On the structure of Cohen-Macaulay simplicial affine semigroups. Comm. Algebra. 1999;27:511-518.Edit
Numerical semigroups with a monotonic Apéry set. Czechoslovak Math. J.. 2005;55(130):755-772.Edit
Every positive integer is the Frobenius number of a numerical semigroup with three generators. Math. Scand.. 2004;94:5-12.Edit
Presentations for subsemigroups of finitely generated commutative semigroups. Israel J. Math.. 1999;113:269-283.Edit
On numerical semigroups with high embedding dimension. J. Algebra. 1998;203:567-578.Edit
Every numerical semigroup is one half of a symmetric numerical semigroup. Proc. Amer. Math. Soc.. 2008;136:475-477 (electronic).Edit
The oversemigroups of a numerical semigroup. Semigroup Forum. 2003;67:145-158.Edit
Irreducible ideals of finitely generated commutative monoids. J. Algebra. 2001;238:328-344.Edit
On free affine semigroups. Semigroup Forum. 1999;58:367-385.Edit
Pseudo-symmetric numerical semigroups with three generators. J. Algebra. 2005;291:46-54.Edit
Fundamental gaps in numerical semigroups. J. Pure Appl. Algebra. 2004;189:301-313.Edit
Systems of inequalities and numerical semigroups. J. London Math. Soc. (2). 2002;65:611-623.Edit
On full affine semigroups. J. Pure Appl. Algebra. 2000;149:295-303.Edit
On Cohen-Macaulay subsemigroups of $\bold N^2$. Comm. Algebra. 1998;26:2543-2558.Edit
Numerical semigroups having a Toms decomposition. Canad. Math. Bull.. 2008;51:134-139.Edit
Numerical semigroups with embedding dimension three. Arch. Math. (Basel). 2004;83:488-496.Edit
Proportionally modular Diophantine inequalities. J. Number Theory. 2003;103:281-294.Edit
Commutative ideal extensions of abelian groups. Semigroup Forum. 2001;62:311-316.Edit
Finitely generated commutative monoids Nova Science Publishers, Inc., Commack, NY 1999.Edit
Modular Diophantine inequalities and numerical semigroups. Pacific J. Math.. 2005;218:379-398.Edit
Arf numerical semigroups. J. Algebra. 2004;276:3-12.Edit