Publications

Found 213 results
[ Author(Desc)] Title Type Year
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
[2007-5] Bessa M, Rocha J. Denseness of ergodicity for a class of partially hyperbolic volume-preserving flows .Edit
Bessa M, Rocha J. Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows. J. Differential Equations. 2009;247:2913-2923.
Bessa M, Rodrigues A. A Dichotomy in Area-Preserving Reversible Maps. Qual. Theory Dyn. Syst.. 2016;15(2):309-326.Edit
Bessa M, Rocha J. A remark on the topological stability of symplectomorphisms. Appl. Math. Lett.. 2012;25:163-165.
[2010-5] Bessa M. Area-preserving diffeomorphisms from the C1 standpoint .
[2006-15] Bessa M, Rocha J. The dynamics of a conservative Hénon map .Edit
Bessa M. Homeomorfismos do plano sem pontos fixos 2005.
[2015-38] Bessa M, Ferreira C, Rocha J, Varandas P. Generic Hamiltonian dynamics, .Edit
[2007-2] Bessa M. Dynamics of generic multidimensional linear differential systems .
Bessa M, Rocha J. Three-dimensional conservative star flows are Anosov. Discrete Contin. Dyn. Syst.. 2010;26:839-846.
Bessa M, Rocha J, Torres MJ. Hyperbolicity and stability for Hamiltonian flows. J. Differential Equations. 2013;254:309-322.Edit
[2010-27] Bessa M. Chaotic C¹-generic conservative 3-flows .
[2007-10] Bessa M, Dias JL. Generic dynamics of 4-dimensional C² Hamiltonian systems .Edit
Bessa M, Rocha J. Removing zero Lyapunov exponents in volume-preserving flows. Nonlinearity. 2007;20:1007-1016.
Bessa M, Rocha J. Contributions to the geometric and ergodic theory of conservative flows. Ergodic Theory Dynam. Systems. 2013;33:1709-1731.
[2008-8] Bessa M. Generic incompressible flows are topological mixing .
[2015-16] Bessa M, Rodrigues AA. A note on reversibility and Pell equations .Edit
[2009-7] Bessa M, Rocha J. Three-dimensional conservative star-flows are Anosov .Edit
Bessa M, Ferreira C, Rocha J. On the stability of the set of hyperbolic closed orbits of a Hamiltonian. Math. Proc. Cambridge Philos. Soc.. 2010;149:373-383.Edit
[2014-8] Bessa M, Rodrigues A. A dichotomy in area-preserving reversible maps .Edit
Bessa M, Rocha J, Torres MJ. Shades of hyperbolicity for Hamiltonians. Nonlinearity. 2013;26:2851-2873.Edit
[2005-40] Bessa M. The Lyapunov exponents of zero divergence 3-dimensional vector fields .
Bessa M, Rocha J. On the fundamental regions of a fixed point free conservative Hénon map. Bull. Aust. Math. Soc.. 2008;77:37-48.
Bessa M., Ferreira C., Rocha J., Varandas P.. Generic Hamiltonian dynamics. J. Dynam. Differential Equations. 2017;29:203-218.Edit
Bessa M, Rocha J. Topological stability for conservative systems. J. Differential Equations. 2011;250:3960-3966.

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.