Publications
Found 213 results
[ Author] Title Type Year Filters: First Letter Of Last Name is B [Clear All Filters]
Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows. J. Differential Equations. 2009;247:2913-2923.
A Dichotomy in Area-Preserving Reversible Maps. Qual. Theory Dyn. Syst.. 2016;15(2):309-326.Edit
A remark on the topological stability of symplectomorphisms. Appl. Math. Lett.. 2012;25:163-165.
[2006-15] The dynamics of a conservative Hénon map .Edit
[2015-38] Generic Hamiltonian dynamics, .Edit
Three-dimensional conservative star flows are Anosov. Discrete Contin. Dyn. Syst.. 2010;26:839-846.
Hyperbolicity and stability for Hamiltonian flows. J. Differential Equations. 2013;254:309-322.Edit
[2010-27] Chaotic C¹-generic conservative 3-flows .
Removing zero Lyapunov exponents in volume-preserving flows. Nonlinearity. 2007;20:1007-1016.
Contributions to the geometric and ergodic theory of conservative flows. Ergodic Theory Dynam. Systems. 2013;33:1709-1731.
[2015-16] A note on reversibility and Pell equations .Edit
On the stability of the set of hyperbolic closed orbits of a Hamiltonian. Math. Proc. Cambridge Philos. Soc.. 2010;149:373-383.Edit
Shades of hyperbolicity for Hamiltonians. Nonlinearity. 2013;26:2851-2873.Edit
On the fundamental regions of a fixed point free conservative Hénon map. Bull. Aust. Math. Soc.. 2008;77:37-48.
Generic Hamiltonian dynamics. J. Dynam. Differential Equations. 2017;29:203-218.Edit
Topological stability for conservative systems. J. Differential Equations. 2011;250:3960-3966.