Publications
Found 20 results
Author Title Type [ Year] Filters: Author is Juan Ignacio García-García [Clear All Filters]
How to check if a finitely generated commutative monoid is a principal ideal commutative monoid. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews). ACM, New York; 2000. 2. p. 288-291p. (electronic).Edit
Commutative ideal extensions of abelian groups. Semigroup Forum. 2001;62:311-316.Edit
Computing the elasticity of a Krull monoid. Linear Algebra Appl.. 2001;336:191-200.Edit
Irreducible ideals of finitely generated commutative monoids. J. Algebra. 2001;238:328-344.Edit
On the number of factorizations of an element in an atomic monoid. Adv. in Appl. Math.. 2002;29:438-453.Edit
Presentations of finitely generated submonoids of finitely generated commutative monoids. Internat. J. Algebra Comput.. 2002;12:659-670.Edit
Systems of inequalities and numerical semigroups. J. London Math. Soc. (2). 2002;65:611-623.Edit
Ideals of finitely generated commutative monoids. Semigroup Forum. 2003;66:305-322.Edit
Numerical semigroups with maximal embedding dimension. Int. J. Commut. Rings. 2003;2:47-53.Edit
The oversemigroups of a numerical semigroup. Semigroup Forum. 2003;67:145-158.Edit
Proportionally modular Diophantine inequalities. J. Number Theory. 2003;103:281-294.Edit
Arf numerical semigroups. J. Algebra. 2004;276:3-12.Edit
Atomic commutative monoids and their elasticity. Semigroup Forum. 2004;68:64-86.Edit
Every positive integer is the Frobenius number of a numerical semigroup with three generators. Math. Scand.. 2004;94:5-12.Edit
Fundamental gaps in numerical semigroups. J. Pure Appl. Algebra. 2004;189:301-313.Edit
Fundamental gaps in numerical semigroups with respect to their multiplicity. Acta Math. Sin. (Engl. Ser.). 2004;20:629-646.Edit
Saturated numerical semigroups. Houston J. Math.. 2004;30:321-330 (electronic).Edit
$k$-factorized elements in telescopic numerical semigroups. In: Arithmetical properties of commutative rings and monoids. Vol 241. Chapman & Hall/CRC, Boca Raton, FL; 2005. 2. p. 260-271p. (Lect. Notes Pure Appl. Math.; vol 241).Edit
Numerical semigroups with a monotonic Apéry set. Czechoslovak Math. J.. 2005;55(130):755-772.Edit
Numerical semigroups with maximal embedding dimension [\refcno 2056070]. In: Focus on commutative rings research. Nova Sci. Publ., New York; 2006. 4. p. 47-53p. Edit