Publications

Found 417 results
[ Author(Asc)] Title Type Year
Filters: First Letter Of Last Name is A  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
[2018-5] Aimino R, Liverani C. Deterministic walks in random environment .Edit
Aimino R, Nicol M, Vaienti S. Annealed and quenched limit theorems for random expanding dynamical systems. Probab. Theory Related Fields. 2015;162:233-274.Edit
Aimino R, Nicol M, Todd M. Recurrence statistics for the space of interval exchange maps and the Teichmüller flow on the space of translation surfaces. Ann. Inst. Henri Poincaré Probab. Stat.. 2017;53:1371-1401.Edit
Ahues M, d'Almeida FD, Largillier A., Titaud O, Vasconcelos PB. An L1 refined projection approximate solution of the radiation transfer equation in stellar atmospheres. Journal of Computational and Applied Mathematics. 2002;140:13-26.Edit
Ahues M, Largillier A, d'Almeida FD, Vasconcelos PB. Spectral refinement on quasi-diagonal matrices. Linear Algebra and its Applications. 2005;401:109-117.Edit
Ahues M, d'Almeida FD, Largillier A, Vasconcelos PB. Spectral refinement for clustered eigenvalues of quasi-diagonal matrices. Linear Algebra and its Applications. 2006;413:394-402.Edit
Ahues M, d'Almeida FD, Largillier A, Vasconcelos PB. Defect correction for spectral computations for a singular integral operator. Communications on Pure and Applied Analysis. 2006;5:241-250.Edit
Aguiló-Gost F, García-Sánchez PA. Factoring in embedding dimension three numerical semigroups. Electron. J. Combin.. 2010;17:Research Paper 138, 21.Edit
Aguiló-Gost F, García-Sánchez PA, Llena D.. On the number of $\ssfL$-shapes in embedding dimension four numerical semigroups. Discrete Math.. 2015;338:2168-2178.Edit
Aguiló-Gost F, Sánchez PA, Llena D.. Denumerants of 3-numerical semigroups. In: Conference on Discrete Mathematics and Computer Science (Spanish). Vol 46. Elsevier Sci. B. V., Amsterdam; 2014. 3. p. 3-10p. (Electron. Notes Discrete Math.; vol 46).Edit
Aguiló-Gost F, García-Sánchez PA. Factorization and catenary degree in 3-generated numerical semigroups. In: European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009). Vol 34. Elsevier Sci. B. V., Amsterdam; 2009. 1. p. 157-161p. (Electron. Notes Discrete Math.; vol 34).Edit
Aguiló-Gost F, Sánchez PA, Llena D.. An algorithm to compute the primitive elements of an embedding dimension three numerical semigroup. In: Conference on Discrete Mathematics and Computer Science (Spanish). Vol 46. Elsevier Sci. B. V., Amsterdam; 2014. 1. p. 185-192p. (Electron. Notes Discrete Math.; vol 46).Edit
Aguiar P, Willshaw D. Hippocampal mossy fibre boutons as dynamical synapses. Neurocomputing. 2004;58:699-703.Edit
Aguiar MA, Dias A., Ruan H.. Synchrony and Elementary Operations on Coupled Cell Networks. SIAM J. Appl. Dyn. Syst.. 2016;15(1):322-337.Edit
[2014-23] Aguiar MA, Dias AP. Regular Synchrony Lattices for Product Cell Networks .Edit
Aguiar MA, Dias A.. Regular Synchrony Lattices for Product Coupled Cell Networks. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2015;25:013108.Edit
Aguiar MA, Castro SB, Labouriau IS. Switching along a network. Dumortier F, Broer H, Mawhin J, Vanderbauwhede A, Lunel S, editors 2005.Edit
Aguiar MA, Dias A.. Minimal Coupled Cell Networks. Nonlinearity . 2007;20:193-219.Edit
Aguiar P. A General Hippocampal Computational Model: Episodic and Spatial Memory Combined in a Spiking Model University of Edinburgh 2006.
Aguiar MA, Castro SB, Labouriau IS. Switching along a network. In: EQUADIFF 2003. World Sci. Publ., Hackensack, NJ; 2005. 4. p. 449-451p.
Aguiar MA, Dias AP. An overview of synchrony in coupled cell networks. Vol 224. D. PAa.zilber, editor 2018.Edit
Aguiar MA, Ashwin P., Dias A, Field M. Dynamics of coupled cell networks: Synchrony, heteroclinic cycles and inflation. Journal of Nonlinear Science. 2011;21(2):271-323.Edit
Aguiar P. A General Hippocampal Computational Model Combining Episodic and Spatial Memory in a Spiking Model.. 2006.
Aguiar P, Sousa M., Lima D.. NMDA channels together with L-type calcium currents and calcium-activated nonspecific cationic currents are sufficient to generate windup in WDR neurons. Journal of Neurophysiology. 2010;104:1155-1166.Edit
Aguiar MA, Castro SB, Labouriau IS. Switching along a network. In: International Conference on Differential Equations, Equadiff 2003, Hasselt, Belgium .; 2003. 4. p. 449-451p.

Pages

Error | CMUP

Error

The website encountered an unexpected error. Please try again later.