Publications

Found 213 results
[ Author(Desc)] Title Type Year
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Bessa M, Rodrigues AA. Dynamics of conservative Bykov cycles: tangencies, generalized Cocoon bifurcations and elliptic solutions. J. Differential Equations. 2016;261(2):1176-1202.Edit
[2008-3] Bessa M, Dias JL. Hamiltonian elliptic dynamics on symplectic 4-manifolds .Edit
[2006-36] Bessa M, Rocha J. Removing zero Lyapunov exponents in volume-preserving flows .Edit
Bessa M, Rocha J. Denseness of ergodicity for a class of volume-preserving flows. Port. Math.. 2011;68:1-17.
Bessa M, Varandas P. Trivial and Simple Spectrum for SL(d,R) Cocycles with Free Base and Fiber Dynamics. Acta Mathematica Sinica. 2015; 31(7):1113-1122.
[2007-17] Bessa M, Rocha J. On C1-robust transitivity of volume-preserving flows .Edit
[2005-31] Bessa M. Dynamics of generic 2-dimensional linear differential systems .
[2007-5] Bessa M, Rocha J. Denseness of ergodicity for a class of partially hyperbolic volume-preserving flows .Edit
Bessa M, Rocha J. Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows. J. Differential Equations. 2009;247:2913-2923.
Bessa M, Rodrigues A. A Dichotomy in Area-Preserving Reversible Maps. Qual. Theory Dyn. Syst.. 2016;15(2):309-326.Edit
[2006-15] Bessa M, Rocha J. The dynamics of a conservative Hénon map .Edit
Bessa M, Rocha J. A remark on the topological stability of symplectomorphisms. Appl. Math. Lett.. 2012;25:163-165.
[2010-5] Bessa M. Area-preserving diffeomorphisms from the C1 standpoint .
Bessa M. Homeomorfismos do plano sem pontos fixos 2005.
[2015-38] Bessa M, Ferreira C, Rocha J, Varandas P. Generic Hamiltonian dynamics, .Edit
[2007-2] Bessa M. Dynamics of generic multidimensional linear differential systems .
Bessa M, Rocha J. Three-dimensional conservative star flows are Anosov. Discrete Contin. Dyn. Syst.. 2010;26:839-846.
Bessa M, Rocha J, Torres MJ. Hyperbolicity and stability for Hamiltonian flows. J. Differential Equations. 2013;254:309-322.Edit
[2010-27] Bessa M. Chaotic C¹-generic conservative 3-flows .
Bessa M, Rocha J. Contributions to the geometric and ergodic theory of conservative flows. Ergodic Theory Dynam. Systems. 2013;33:1709-1731.
[2007-10] Bessa M, Dias JL. Generic dynamics of 4-dimensional C² Hamiltonian systems .Edit
Bessa M, Rocha J. Removing zero Lyapunov exponents in volume-preserving flows. Nonlinearity. 2007;20:1007-1016.
[2008-8] Bessa M. Generic incompressible flows are topological mixing .
[2015-16] Bessa M, Rodrigues AA. A note on reversibility and Pell equations .Edit
[2009-7] Bessa M, Rocha J. Three-dimensional conservative star-flows are Anosov .Edit

Pages