Found 213 results
[ Author(Desc)] Title Type Year
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
[2007-2] Bessa M. Dynamics of generic multidimensional linear differential systems .
Bessa M, Varandas P. Trivial and Simple Spectrum for SL(d,R) Cocycles with Free Base and Fiber Dynamics. Acta Mathematica Sinica. 2015; 31(7):1113-1122.
Bessa M, Rocha J, Torres MJ. Hyperbolicity and stability for Hamiltonian flows. J. Differential Equations. 2013;254:309-322.Edit
[2010-27] Bessa M. Chaotic C¹-generic conservative 3-flows .
Bessa M, Rocha J. Removing zero Lyapunov exponents in volume-preserving flows. Nonlinearity. 2007;20:1007-1016.
[2007-10] Bessa M, Dias JL. Generic dynamics of 4-dimensional C² Hamiltonian systems .Edit
[2008-8] Bessa M. Generic incompressible flows are topological mixing .
Bessa M, Rodrigues A. A Dichotomy in Area-Preserving Reversible Maps. Qual. Theory Dyn. Syst.. 2016;15(2):309-326.Edit
[2009-7] Bessa M, Rocha J. Three-dimensional conservative star-flows are Anosov .Edit
Bessa M, Ferreira C, Rocha J. On the stability of the set of hyperbolic closed orbits of a Hamiltonian. Math. Proc. Cambridge Philos. Soc.. 2010;149:373-383.Edit
[2014-8] Bessa M, Rodrigues A. A dichotomy in area-preserving reversible maps .Edit
Bessa M, Rocha J, Torres MJ. Shades of hyperbolicity for Hamiltonians. Nonlinearity. 2013;26:2851-2873.Edit
[2005-40] Bessa M. The Lyapunov exponents of zero divergence 3-dimensional vector fields .
Bessa M, Rocha J. On the fundamental regions of a fixed point free conservative Hénon map. Bull. Aust. Math. Soc.. 2008;77:37-48.
[2015-38] Bessa M, Ferreira C, Rocha J, Varandas P. Generic Hamiltonian dynamics, .Edit
Bessa M, Rocha J. Topological stability for conservative systems. J. Differential Equations. 2011;250:3960-3966.
[2010-8] Bessa M, Varandas P. On the entropy of conservative flows .
[2006-40] Bessa M. On the spectrum of generic random product of compact operators .
[2014-7] Bessa M, Carvalho M, Rodrigues A. Generic area-preserving reversible diffeomorphisms .Edit
[2007-20] Bessa M, Duarte P. Abundance of elliptic dynamics on conservative 3-flows .Edit
[2008-24] Bessa M. Are there chaotic maps in the sphere? .
Bessa M, Rocha J. Contributions to the geometric and ergodic theory of conservative flows. Ergodic Theory Dynam. Systems. 2013;33:1709-1731.
Bessa M, Rocha J. On $C^1$-robust transitivity of volume-preserving flows. J. Differential Equations. 2008;245:3127-3143.
[2015-16] Bessa M, Rodrigues AA. A note on reversibility and Pell equations .Edit
[2008-3] Bessa M, Dias JL. Hamiltonian elliptic dynamics on symplectic 4-manifolds .Edit


Error | CMUP


The website encountered an unexpected error. Please try again later.