Rocha J, Varandas P. The centralizer of $C^r$-generic diffeomorphisms at hyperbolic basic sets is trivial. Proc. Amer. Math. Soc.. 2018;146:247-260.
Rocha J, Varandas P. On sensitivity to initial conditions and uniqueness of conjugacies for structurally stable diffeomorphisms. Nonlinearity. 2018;31:293-313.
Bessa M., Ferreira C., Rocha J., Varandas P.. Generic Hamiltonian dynamics. J. Dynam. Differential Equations. 2017;29:203-218.
Díaz LJ, Esteves S, Rocha J. Skew product cycles with rich dynamics: from totally non-hyperbolic dynamics to fully prevalent hyperbolicity. Dyn. Syst.. 2016;31:1-40.
Bessa M, Rocha J. Contributions to the geometric and ergodic theory of conservative flows. Ergodic Theory Dynam. Systems. 2013;33:1709-1731.
Bessa M, Rocha J, Torres MJ. Shades of hyperbolicity for Hamiltonians. Nonlinearity. 2013;26:2851-2873.
Bessa M, Rocha J, Torres MJ. Hyperbolicity and stability for Hamiltonian flows. J. Differential Equations. 2013;254:309-322.
Bessa M, Rocha J. A remark on the topological stability of symplectomorphisms. Appl. Math. Lett.. 2012;25:163-165.
Bessa M, Rocha J. Denseness of ergodicity for a class of volume-preserving flows. Port. Math.. 2011;68:1-17.
Bessa M, Rocha J. Topological stability for conservative systems. J. Differential Equations. 2011;250:3960-3966.
Bessa M, Ferreira C, Rocha J. On the stability of the set of hyperbolic closed orbits of a Hamiltonian. Math. Proc. Cambridge Philos. Soc.. 2010;149:373-383.
Bessa M, Rocha J. Three-dimensional conservative star flows are Anosov. Discrete Contin. Dyn. Syst.. 2010;26:839-846.
Bessa M, Rocha J. Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows. J. Differential Equations. 2009;247:2913-2923.
Bessa M, Rocha J. On $C^1$-robust transitivity of volume-preserving flows. J. Differential Equations. 2008;245:3127-3143.
Rocha J. A note on the $C^0$-centralizer of an open class of bidimensional Anosov diffeomorphisms. Aequationes Math.. 2008;76:105-111.
Bessa M, Rocha J. On the fundamental regions of a fixed point free conservative Hénon map. Bull. Aust. Math. Soc.. 2008;77:37-48.
Bessa M, Rocha J. Removing zero Lyapunov exponents in volume-preserving flows. Nonlinearity. 2007;20:1007-1016.
Díaz LJ, Rocha J. How do hyperbolic homoclinic classes collide at heterodimensional cycles? Discrete Contin. Dyn. Syst.. 2007;17:589-627.
Bonatti C, Díaz LJ, Pujals ER, Rocha J. Robustly transitive sets and heterodimensional cycles. Astérisque. 2003:xix, 187-222.
Díaz L., Rocha J.. Heterodimensional cycles, partial hyperbolicity and limit dynamics. Fund. Math.. 2002;174:127-186.
Díaz LJ, Rocha J. Partially hyperbolic and transitive dynamics generated by heteroclinic cycles. Ergodic Theory Dynam. Systems. 2001;21:25-76.
Gambaudo J-, Rocha J.. Erratum: ``Maps of the two-sphere at the boundary of chaos'' [Nonlinearity \bf 7 (1994), no. 4, 1251–1259; MR1284691 (95e:58107)]. Nonlinearity. 1999;12:443.
Díaz LJ, Rocha J. Large measure of hyperbolic dynamics when unfolding heteroclinic cycles. Nonlinearity. 1997;10:857-884.
Díaz LJ, Rocha J. Non-critical saddle-node cycles and robust non-hyperbolic dynamics. Dynam. Stability Systems. 1997;12:109-135.
Díaz L., Rocha J., Viana M. Strange attractors in saddle-node cycles: prevalence and globality. Invent. Math.. 1996;125:37-74.
Rocha J. Centralizers and entropy. Bol. Soc. Brasil. Mat. (N.S.). 1994;25:213-222.
Gambaudo J-, Rocha J. Maps of the two-sphere at the boundary of chaos. Nonlinearity. 1994;7:1251-1259.
Rocha J.. Rigidity of the $C^1$-centralizer of bidimensional diffeomorphisms. In: Dynamical systems ({S}antiago, 1990). Vol 285. Longman Sci. Tech., Harlow; 1993. 2. p. 211-229p.
Rocha J. Rigidity of centralizers of real analytic diffeomorphisms. Ergodic Theory Dynam. Systems. 1993;13:175-197.
Díaz LJ, Rocha J. Nonconnected heterodimensional cycles: bifurcation and stability. Nonlinearity. 1992;5:1315-1341.
Rocha J. Periodic points of a continuous map of the interval. Portugal. Math.. 1987;44:361-370.