Publications
Dicionário de Matemática Elementar, de Stella Baruk. Vol 2 Edições Afrontamento 2005.Edit
Heart Rate Variability in Children Submitted to Surgery. Journal of Anesthesia & Clinical Research. 2016;7.Edit
On free inverse monoid languages. RAIRO Inform. Théor. Appl.. 1996;30:349-378.
Francisco Gomes Teixeira. CIM Bulletin. 2004;16:21-23.Edit
On an algorithm to decide whether a free group is a free factor of another. Theor. Inform. Appl.. 2008;42:395-414.Edit
The homomorphism problem for trace monoids. Theoret. Comput. Sci.. 2003;307:199-215.
Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams. PloS one. 2014;9:e107112.Edit
Recognizable subsets of a group: finite extensions and the abelian case. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS. 2002:195-215.
Fixed points of endomorphisms of virtually free groups. Pacific J. Math.. 2013;263:207-240.
Automorphic orbits in free groups: words versus subgroups. Internat. J. Algebra Comput.. 2010;20:561-590.Edit
Shared knowledge or shared affordances? insights from an ecological dynamics approach to team coordination in sports. Sports Medicine. 2013;43:765-772.Edit
[2012-16] Groups and automata: a perfect match .
[2015-41] On the circulation of algebraic knowledge in the Iberian península:the sources of Pérez de Moya's Tratado de Arithmetica (1573) .Edit
Normal-convex embeddings of inverse semigroups. Glasgow Math. J.. 1993;35:115-121.
The algebraic content of Bento Fernandes’s Tratado da arte de arismetica (1555). Historia Mathematica . 2008;35 :190-219.Edit
José Anastácio da Cunha e a Álgebra do seu tempo. CMUM ed. Portugal, Braga: Universidade do Minho. Centro de Matemática (CMAT) 2005.Edit
Free group languages: rational versus recognizable. Theor. Inform. Appl.. 2004;38:49-67.
Extensions and submonoids of automatic monoids. Theoret. Comput. Sci.. 2002;289:727-754.Edit
A note on Pérez de Moya's Principios de Geometria (1584). Revue d'histoire des mathématiques . 2008;14 ( fascicule 1 ):113-133.Edit
On the semilattice of idempotents of a free inverse monoid. Proc. Edinburgh Math. Soc. (2). 1993;36:349-360.
Finite automata for Schreier graphs of virtually free groups. J. Group Theory. 2016;19:25-54.Edit