Publications
Automorphic orbits in free groups: words versus subgroups. Internat. J. Algebra Comput.. 2010;20:561-590.Edit
Groups and automata: a perfect match. J. Automata Lang. Combin.. 2012;17(2-4):277-292.
Normal-convex embeddings of inverse semigroups. Glasgow Math. J.. 1993;35:115-121.
[2015-25] On the circulation of algebraic knowledge in the Iberian península: the sources of Pérez de Moya's Tratado de Arithmetica (1573) .Edit
Howson’s property for semidirect products of semilattices by groups. Comm. Algebra. 2016;44(6):2482-2494.Edit
Equações no «Libro de Algebra» de Pedro Nunes. Vol 68 APM 2002.Edit
Heart Rate Variability in Children Submitted to Surgery. Journal of Anesthesia & Clinical Research. 2016;7.Edit
Free group languages: rational versus recognizable. Theor. Inform. Appl.. 2004;38:49-67.
Contribuição para o estudo do manuscrito Arte de Marear de Juan Pérez de Moya. LLULL. 2012;35(76):351-379.Edit
Extensions and submonoids of automatic monoids. Theoret. Comput. Sci.. 2002;289:727-754.Edit
Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams. PloS one. 2014;9:e107112.Edit
On a class of automata groups generalizing lamplighter groups. Internat. J. Algebra Comput.. 2005;15:1213-1234.Edit
On the semilattice of idempotents of a free inverse monoid. Proc. Edinburgh Math. Soc. (2). 1993;36:349-360.
[2015-41] On the circulation of algebraic knowledge in the Iberian península:the sources of Pérez de Moya's Tratado de Arithmetica (1573) .Edit
Francisco Gomes Teixeira. CIM Bulletin. 2004;16:21-23.Edit
Finite idempotent inverse monoid presentations. Internat. J. Algebra Comput.. 2011;21:1111-1133.
Rational subsets of partially reversible monoids. Theoret. Comput. Sci.. 2008;409:537-548.
Fixed points of endomorphisms of virtually free groups. Pacific J. Math.. 2013;263:207-240.
A geometric characterization of automatic monoids. Q. J. Math.. 2004;55:333-356.Edit
Clifford monoid presentations. Math. Proc. Cambridge Philos. Soc.. 1992;111:445-454.
Fixed points of endomorphisms over special confluent rewriting systems. Monatsh. Math.. 2010;161:417-447.
[2010-14] Finite idempotent inverse monoid presentations .