Publications
On a new index transformation related to the product of Macdonald functions. Rad. Mat.. 2004;13:63-85.
About a new class of integral transforms in Hilbert space. Math. Balkanica (N.S.). 1995;9:179-191.
New inversion, convolution and Titchmarsh's theorems for the half-Hilbert transform. Integral Transforms Spec. Funct.. 2014;25:955-968.
Beurling's theorems and inversion formulas for certain index transforms. Opuscula Math.. 2009;29:93-110.
On a new approach to convolution constructions. Internat. J. Math. Math. Sci.. 1993;16:435-448.Edit
Lebedev's type index transforms with the modified Bessel functions. Commun. Math. Anal.. 2016;19(2):68-81.
[2004-3] Theorems of the Hausdorff-Young and Riesz-Kolmogorov type for the Kontorovich-Lebedev transform and .
A real inversion formula for the bilateral Laplace transform. Izv. Nats. Akad. Nauk Armenii Mat.. 2005;40:67-79.
On the new approach to the constructions of the index transforms. Dissertationes Math. (Rozprawy Mat.). 1995;340:321-335.
The Titchmarsh integral transformation by the index of a Bessel function. J. Comput. Appl. Math.. 2000;118:353-361.
Integral convolutions for $H$-transformations. Izv. Vyssh. Uchebn. Zaved. Mat.. 1991:72-79.Edit
On the half-Hartley transform, its iteration and compositions with Fourier transforms. J. Integral Equations Appl. . 2014;26(4):581-608.
An analog of Morgan's theorem for the Kontorovich-Lebedev transform. Adv. Pure Appl. Math.. 2010;1:159-162.Edit
The hypergeometric approach to integral transforms and convolutions. Vol 287 Kluwer Academic Publishers Group, Dordrecht 1994.Edit
On the convolution for the Kontorovich-Lebedev transformation and its applications to integral equations. Dokl. Akad. Nauk BSSR. 1987;31:101-103, 188.
Boundedness and inversion properties of certain convolution transforms. J. Korean Math. Soc.. 2003;40:999-1014.
The Kontorovich-Lebedev type transforms and their convolutions. In: Complex analysis and generalized functions (Varna, 1991). Publ. House Bulgar. Acad. Sci., Sofia; 1993. 3. p. 348-360p.