Publications
[2011-15] A convolution operator related to the generalized Mehler-Fock and Kontorovich-Lebedev transforms .Edit
On the construction of integral transformations by the composition method. Izv. Vyssh. Uchebn. Zaved. Mat.. 1993:71-79 (1994).
On the general index transforms in $L_p$-space. S\=urikaisekikenky\=usho Kōky\=uroku. 1995:60-71.Edit
Index transforms with the squares of Bessel functions. Integral Transforms Spec. Funct.. 2016;27(12):981-994.
[2010-3] An index integral and convolution operator related to the Kontorovich-Lebedev and Mehler-Fock transf .
The Plancherel, Titchmarsh and convolution theorems for the half-Hartley transform. Integral Transforms Spec. Funct.. 2014;25:836-848.
Uncertainty principles for the Kontorovich-Lebedev transform. Math. Model. Anal.. 2008;13:289-302.
Index transforms associated with generalized hypergeometric functions. Math. Methods Appl. Sci.. 2004;27:35-46.
A general class of Voronoi's and Koshliakov-Ramanujan's summation formulas involving $d_k(n)$. Integral Transforms Spec. Funct.. 2011;22:801-821.
On the curious series related to the elliptic integrals. The Ramanujan Journal. 2018;45(3):797-815.
On some Rajchman measures and equivalent Salem's problem. Commun. Math. Anal.. 2013;14:28-41.
Index transforms associated with Bessel and Lommel functions. Z. Anal. Anwendungen. 2002;21:627-638.
[2008-7] Convolution operators related to Fourier cosine and Kontorovich-Lebedev Transformations .Edit
A stochastic continuous cellular automata traffic flow model with a multi-agent fuzzy system. In: EWGT2012 - 15th Meeting of the EURO Working Group on Transportation, September 2012, Paris. Vol Procedia - Social and Behavioral Sciences vol. 54.; 2012. p. pp. p. 1350-1359p. Edit
On the rank of the intersection of free subgroups in virtually free groups. Journal of Algebra. 2014;418:29-43.
An estimate for the rank of the intersection of subgroups in free amalgamated products of two groups with normal finite amalgamated subgroup. Matematicheskii Sbornik . 2013;204(2):73-86.
[2010-4] Submanifolds in Poisson geometry: a survey .