Publications
Convolutions related to the Fourier and Kontorovich-Lebedev transforms revisited. Integral Transforms Spec. Funct.. 2010;21:259-276.Edit
On the theory of convolution integral equations related to Lebedev's type operators. Sarajevo J. Math.. 2009;5(17):119-132.
On the Lebedev transformation in Hardy's spaces. Int. J. Math. Math. Sci.. 2004:3603-3616.
[2007-16] On a progress in the Kontorovich-Lebedev transform theory and related integral operators .
On the theory of the Kontorovich-Lebedev transformation on distributions. Proc. Amer. Math. Soc.. 1994;122:773-777.Edit
Convolutions for $H$-function transformations. Indian J. Pure Appl. Math.. 1992;23:743-752.Edit
On the Weber integral equation and solution to the Weber–Titchmarsh problem. Journal of Mathematical Analysis and Applications. 2018;460(1):400-410.
Integral transforms of the Kontorovich-Lebedev convolution type. Collect. Math.. 2003;54:99-110.
[2004-3] Theorems of the Hausdorff-Young and Riesz-Kolmogorov type for the Kontorovich-Lebedev transform and .
Voronoi-Nasim summation formulas and index transforms. Integral Transforms Spec. Funct.. 2012;23:369-388.
Generalizations of the Leibniz rule to integral convolutions. Dokl. Akad. Nauk BSSR. 1991;35:111-115, 188.Edit
Integral transformation associated with the Macdonald type kernels. East-West J. Math.. 2000;2:73-84.Edit
On the Watson $L_2$-theory for index transforms II. Integral Transforms Spec. Funct.. 2010;21:663-673.
A remark on the inversion formula for Wimp's integral transformation with respect to the index. Differentsial\cprime nye Uravneniya. 1985;21:1097-1098, 1104.
A double index transform with a product of Macdonald's functions revisited. Opuscula Math.. 2009;29:313-329.
The Plancherel and Hausdorff-Young type theorems for an index transformation. Z. Anal. Anwend.. 2006;25:193-204.
Operational properties of convolution for the Kontorovich-Lebedev transformation. Dokl. Akad. Nauk Belarusi. 1994;38:19-23, 122-123.Edit
On the Mehler-Fock transform in $L_p$-space. Math. Nachr.. 1997;185:261-277.Edit