Publications
The discrete Markus-Yamabe problem for symmetric planar polynomial maps. Indag. Math. (N.S.). 2012;23:603-608.
Discrete Symmetric Planar Dynamics. Vol Dynamics, Games and Science. CIM Series in Mathematical Sciences ed. Springer-Verlag 2015.
[2012-12] Global Dynamics for Symmetric Planar Maps .
A local but not global attractor for a $\Bbb Z_n$-symmetric map. J. Singul.. 2012;6:1-14.
A local but not global attractor for a Z_n-symmetric map. J. Singul.. 2012;6:1-14.
[2016-12] Global Saddles for Planar Maps .
Delivery of pharmaceutics to bone: nanotechnologies, high-throughput processing and in silico mathematical models. EUROPEAN CELLS & MATERIALS. 2016;30:355-381.Edit
A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems. Mathematical Methods in the Applied Sciences. 2016;39(13):3640-3649.Edit
Hunter’s Lemma for Forest Algebras. In: The International Conference on 46th Annual Iranian Mathematics. Iran, Yazd. 1. p. 1307-1310p. Edit
On Pseudovarieties of Forest Algebras. International Journal of Foundations of Computer Science.Edit
Infinite-vertex free profinite semigroupoids and symbolic dynamics. J. Pure Appl. Algebra. 2009;213:605-631.Edit
[2015-34] Representations of relatively free profinite semigroups, irreducibility, and order primitivity .Edit
On hyperdecidable pseudovarieties of simple semigroups. Internat. J. Algebra Comput.. 2000;10:261-284.Edit
On finite simple semigroups. Proc. Edinburgh Math. Soc. (2). 1991;34:205-215.Edit
Semisimple Synchronizing Automata and the Wedderburn-Artin Theory. In: Development in Language Theory, DLT 2014. Vol LNCS, 8633.; 2014. 4. p. 49-60p. Edit
McCammond's normal forms for free aperiodic semigroups revisited. LMS J. Comput. Math.. 2015;18:130-147.Edit
The join of the pseudovarieties of $\scr R$-trivial and $\scr L$-trivial monoids. J. Pure Appl. Algebra. 1989;60:129-137.Edit
Subword complexity of profinite words and subgroups of free profinite semigroups. Internat. J. Algebra Comput.. 2006;16:221-258.Edit
Generalized varieties of commutative and nilpotent semigroups. Semigroup Forum. 1984;30:77-98.Edit
On a problem of Brzozowski and Fich. In: Semigroups and applications (St. Andrews, 1997). World Sci. Publ., River Edge, NJ; 1998. 1. p. 1-17p. Edit
On the topological semigroup of equational classes of finite functions under composition. J. of Mult.-Valued Logic & Soft Computing. 2017;28(1):5-28.Edit
Semidirect products with the pseudovariety of all finite groups. In: Words, languages & combinatorics, III (Kyoto, 2000). World Sci. Publ., River Edge, NJ; 2003. 1. p. 1-21p. Edit