Publications
Conjugacy and transposition for inverse monoid presentations. Internat. J. Algebra Comput.. 1996;6:607-622.
José Anastácio da Cunha e a Álgebra do seu tempo. CMUM ed. Portugal, Braga: Universidade do Minho. Centro de Matemática (CMAT) 2005.Edit
A note on pure and $p$-pure languages. Acta Inform.. 2003;39:579-595.
Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams. PloS one. 2014;9:e107112.Edit
Finite automata for Schreier graphs of virtually free groups. J. Group Theory. 2016;19:25-54.Edit
On finite-index extensions of subgroups of free groups. J. Group Theory. 2010;13:365-381.Edit
Trees associated to inverse monoid presentations. J. Pure Appl. Algebra. 2001;165:307-335.
Rational languages and inverse monoid presentations. Internat. J. Algebra Comput.. 1992;2:187-207.
Renaissance sources of Juan Pérez de Moya’s geometries. Asclepio. Revista de Historia de la Medicina y de la Ciencia. 2013;65 (2)(julio-diciembre ):1-18.Edit
The homomorphism problem for the free monoid. Discrete Math.. 2002;259:189-200.
On free inverse monoid languages. RAIRO Inform. Théor. Appl.. 1996;30:349-378.
Fixed points of endomorphisms of virtually free groups. Pacific J. Math.. 2013;263:207-240.
On an algorithm to decide whether a free group is a free factor of another. Theor. Inform. Appl.. 2008;42:395-414.Edit
The homomorphism problem for trace monoids. Theoret. Comput. Sci.. 2003;307:199-215.
Automorphic orbits in free groups: words versus subgroups. Internat. J. Algebra Comput.. 2010;20:561-590.Edit
Recognizable subsets of a group: finite extensions and the abelian case. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS. 2002:195-215.
A note on Pérez de Moya's Principios de Geometria (1584). Revue d'histoire des mathématiques . 2008;14 ( fascicule 1 ):113-133.Edit
Shared knowledge or shared affordances? insights from an ecological dynamics approach to team coordination in sports. Sports Medicine. 2013;43:765-772.Edit