Publications
McCammond's normal forms for free aperiodic semigroups revisited. LMS J. Comput. Math.. 2015;18:130-147.Edit
The join of the pseudovarieties of $\scr R$-trivial and $\scr L$-trivial monoids. J. Pure Appl. Algebra. 1989;60:129-137.Edit
Subword complexity of profinite words and subgroups of free profinite semigroups. Internat. J. Algebra Comput.. 2006;16:221-258.Edit
Generalized varieties of commutative and nilpotent semigroups. Semigroup Forum. 1984;30:77-98.Edit
[2008-21] Rational Codes and Free Profinite Monoids .Edit
Hunter’s Lemma for Forest Algebras. In: The International Conference on 46th Annual Iranian Mathematics. Iran, Yazd. 1. p. 1307-1310p. Edit
On Pseudovarieties of Forest Algebras. International Journal of Foundations of Computer Science.Edit
A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems. Mathematical Methods in the Applied Sciences. 2016;39(13):3640-3649.Edit
Delivery of pharmaceutics to bone: nanotechnologies, high-throughput processing and in silico mathematical models. EUROPEAN CELLS & MATERIALS. 2016;30:355-381.Edit
Global saddles for planar maps. Journal of Dynamics and Differential Equations. In Press.
[2012-12] Global Dynamics for Symmetric Planar Maps .
The discrete Markus-Yamabe problem for symmetric planar polynomial maps. Indag. Math. (N.S.). 2012;23:603-608.
Discrete Symmetric Planar Dynamics. Vol Dynamics, Games and Science. CIM Series in Mathematical Sciences ed. Springer-Verlag 2015.
A local but not global attractor for a $\Bbb Z_n$-symmetric map. J. Singul.. 2012;6:1-14.
Global dynamics for symmetric planar maps. Discrete Contin. Dyn. Syst.. 2013;33:2241-2251.
[2016-12] Global Saddles for Planar Maps .
A local but not global attractor for a Z_n-symmetric map. J. Singul.. 2012;6:1-14.
τ-complemented and τ-supplemented modules. Algebra Discrete Math.. 2006:1-16.Edit
Application of eigensolvers in quadratic eigenvalue problems for brake systems analysis. Vol 8584 LNCS Portugal, Guimaraes: Springer International Publishing 2014.
Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete Contin. Dyn. Syst.. 2015;35:793-806.Edit
A note on the large deviations for piecewise expanding multidimensional maps. In: Nonlinear dynamics new directions. Vol 11. Springer, Cham; 2015. 1. p. 1-10p. (Nonlinear Syst. Complex.; vol 11).Edit