Publications

Found 2290 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Gao Y, Moreira N, Reis R, Yu S. A Survey on Operational State Complexity. Journal of Automata, Languages and Combinatorics. 2017;21:251-310.Edit
Costa JP, Cardoso JS, Da Costa J, Cardoso M.. SVMs applied to objective aesthetic evaluation of conservative breast cancer treatment. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5.; 2005. Edit
Cardoso JS, Da Costa J, Cardoso M.. svms applied to objective aesthetic evaluation of conservative breast cancer treatment. proceedings of the international joint conference on neural networks (ijcnn), vols 1-5. 2005;4:2481-2486.Edit
Cardoso JS, da Costa J., Cardoso M., Cardoso JS. SVMs applied to objective aesthetic evaluation of conservative breast cancer treatment. In: Proceedings of the International Joint Conference on Neural Networks.; 2005. 2. p. 2481-2486p. (IEEE International Joint Conference on Neural Networks (IJCNN)).Edit
Aguiar MA, Castro SB, Labouriau IS. Switching along a network. In: International Conference on Differential Equations, Equadiff 2003, Hasselt, Belgium .; 2003. 4. p. 449-451p.
Aguiar MA, Castro SB, Labouriau IS. Switching along a network. Dumortier F, Broer H, Mawhin J, Vanderbauwhede A, Lunel S, editors 2005.Edit
Aguiar MA, Castro SB, Labouriau IS. Switching along a network. In: EQUADIFF 2003. World Sci. Publ., Hackensack, NJ; 2005. 4. p. 449-451p.
[2015-21] Castro SB, Lohse A. Switching in heteroclinic networks .Edit
Castro SB, Lohse A.. Switching in heteroclinic networks. SIAM Journal on Applied Dynamical Systems (SIADS). 2016;15(2):1085-1103.Edit
[2008-38] Aguiar MA, Labouriau IS, Rodrigues A.. Switching near a network of rotating nodes .
Aguiar MA, Labouriau IS, Rodrigues AA. Switching near a network of rotating nodes. Dyn. Syst.. 2010;25:75-95.Edit
Mesquita T., da Rocha Z.. Symbolic approach to the general cubic decomposition of polynomial sequences. Results for several orthogonal and symmetric cases. Opuscula Mathematica. 2012;32(4):675-687.Edit
[2017-27] Macedo Â., Mesquita T., da Rocha Z.. Symbolic approach to the general quadratic polynomial decomposition .Edit
[2010-7] Rocha Z. Symbolic implementation, in the Mathematica language, for deriving closed formulas for connection co .
Mesquita TA, Rocha Z. Symbolic implementation of polynomial sequences cubic decomposition 2012.Edit
[2010-13] Mesquita TA, Rocha Z. Symbolic implementation of the general cubic decomposition of polynomial sequences. Results for seve .Edit
Konstantinidis S, Meijer C, Moreira N, Reis R. Symbolic Manipulation of Code Properties 2015.Edit
Mano VM, Vieira L. Symmetric association schemes and generalized krein parameters, 2015. International Journal of Mathematical Models and Methods in Applied Sciences . 2015;9:310-314.Edit
Bell J, Brzozowski J, Moreira N, Reis R. Symmetric Groups and Quotient Complexity of Boolean Operations. Vol 8573. Esparza J, Fraigniaud P, Husfeldt T, Koutsoupias E, editors 2014.Edit
[2007-4] Pinho EM, Labouriau IS. Symmetries of Projected Symmetric Patterns .Edit
Labouriau IS, Pinho EM. Symmetries of projected wallpaper patterns. Math. Proc. Cambridge Philos. Soc.. 2006;141:421-441.Edit
[2004-28] Labouriau IS, Pinho EM. Symmetries of projected wallpaper patterns .Edit
Castro SB. Symmetry and bifurcation of periodic solutions in Neumann boundary value problems. Port. Math.. 2008;65:373-385.
Abdolvahad M., Carello C., Pinto C., Turvey M., Frank T.. Symmetry and order parameter dynamics of the human odometer. Biological Cybernetics. 2014.Edit
Dias A., Stewart I.. Symmetry Groupoids and Admissible Vector Fields for Coupled Cell Networks. Journal of the London Mathematical Society. 2004;69:707-736.Edit

Pages