Publications
Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams. PloS one. 2014;9:e107112.Edit
a partitional clustering algorithm validated by a clustering tendency index based on graph theory. pattern recognition. 2006;39:776-788.Edit
Free group languages: rational versus recognizable. Theor. Inform. Appl.. 2004;38:49-67.
Extensions and submonoids of automatic monoids. Theoret. Comput. Sci.. 2002;289:727-754.Edit
[2015-41] On the circulation of algebraic knowledge in the Iberian península:the sources of Pérez de Moya's Tratado de Arithmetica (1573) .Edit
[2012-16] Groups and automata: a perfect match .
Francisco Gomes Teixeira. CIM Bulletin. 2004;16:21-23.Edit
On the semilattice of idempotents of a free inverse monoid. Proc. Edinburgh Math. Soc. (2). 1993;36:349-360.
On a class of automata groups generalizing lamplighter groups. Internat. J. Algebra Comput.. 2005;15:1213-1234.Edit
Finite idempotent inverse monoid presentations. Internat. J. Algebra Comput.. 2011;21:1111-1133.
A note on Pérez de Moya's Principios de Geometria (1584). Revue d'histoire des mathématiques . 2008;14 ( fascicule 1 ):113-133.Edit
Renaissance sources of Juan Pérez de Moya’s geometries. Asclepio. Revista de Historia de la Medicina y de la Ciencia. 2013;65 (2)(julio-diciembre ):1-18.Edit
Rational subsets of partially reversible monoids. Theoret. Comput. Sci.. 2008;409:537-548.
Clifford monoid presentations. Math. Proc. Cambridge Philos. Soc.. 1992;111:445-454.
A geometric characterization of automatic monoids. Q. J. Math.. 2004;55:333-356.Edit
Fixed points of endomorphisms over special confluent rewriting systems. Monatsh. Math.. 2010;161:417-447.
Finite automata for Schreier graphs of virtually free groups. J. Group Theory. 2016;19:25-54.Edit
José Anastácio da Cunha e a Álgebra do seu tempo. CMUM ed. Portugal, Braga: Universidade do Minho. Centro de Matemática (CMAT) 2005.Edit
The word problem for nilpotent inverse monoids. Semigroup Forum. 1995;51:285-293.