Publications
[2012-12] Global Dynamics for Symmetric Planar Maps .
A local but not global attractor for a $\Bbb Z_n$-symmetric map. J. Singul.. 2012;6:1-14.
Discrete Symmetric Planar Dynamics. Vol Dynamics, Games and Science. CIM Series in Mathematical Sciences ed. Springer-Verlag 2015.
A local but not global attractor for a Z_n-symmetric map. J. Singul.. 2012;6:1-14.
Global dynamics for symmetric planar maps. Discrete Contin. Dyn. Syst.. 2013;33:2241-2251.
[2016-12] Global Saddles for Planar Maps .
Delivery of pharmaceutics to bone: nanotechnologies, high-throughput processing and in silico mathematical models. EUROPEAN CELLS & MATERIALS. 2016;30:355-381.Edit
A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems. Mathematical Methods in the Applied Sciences. 2016;39(13):3640-3649.Edit
Hunter’s Lemma for Forest Algebras. In: The International Conference on 46th Annual Iranian Mathematics. Iran, Yazd. 1. p. 1307-1310p. Edit
On Pseudovarieties of Forest Algebras. International Journal of Foundations of Computer Science.Edit
The pseudovariety $\bf J$ is hyperdecidable. RAIRO Inform. Théor. Appl.. 1997;31:457-482.Edit
[2015-34] Representations of relatively free profinite semigroups, irreducibility, and order primitivity .Edit
On power varieties of semigroups. J. Algebra. 1989;120:1-17.Edit
Fetal QRS detection and heart rate estimation: A wavelet-based approach. Physiological Measurement. 2014;35:1723-1735.Edit
Tameness of pseudovariety joins involving R. Monatsh. Math.. 2005;146:89-111.Edit
Dynamics of finite semigroups. In: Semigroups, algorithms, automata and languages (Coimbra, 2001). World Sci. Publ., River Edge, NJ; 2002. 2. p. 269-292p. Edit
On the topological semigroup of equational classes of finite functions under composition. J. of Mult.-Valued Logic & Soft Computing. 2017;28(1):5-28.Edit
McCammond's normal forms for free aperiodic semigroups revisited. LMS J. Comput. Math.. 2015;18:130-147.Edit
Reduced factorizations in free profinite groups and join decompositions of pseudovarieties. Internat. J. Algebra Comput.. 1994;4:375-403.Edit
Improved QT variability quantification by multilead automatic delineation. In: {32nd Annual Conference on Computers in Cardiology}. Vol {32}. {IEEE}; 2005. {. {p. 503-506p. }.Edit
An addendum: ``The gap between partial and full'' [Internat. J. Algebra Comput. \bf 8 (1998), no. 3, 399–430; MR1627844 (99g:20102)]. Internat. J. Algebra Comput.. 2001;11:131-135.Edit