Publications
The homomorphism problem for the free monoid. Discrete Math.. 2002;259:189-200.
A note on Pérez de Moya's Principios de Geometria (1584). Revue d'histoire des mathématiques . 2008;14 ( fascicule 1 ):113-133.Edit
On free inverse monoid languages. RAIRO Inform. Théor. Appl.. 1996;30:349-378.
On an algorithm to decide whether a free group is a free factor of another. Theor. Inform. Appl.. 2008;42:395-414.Edit
Renaissance sources of Juan Pérez de Moya’s geometries. Asclepio. Revista de Historia de la Medicina y de la Ciencia. 2013;65 (2)(julio-diciembre ):1-18.Edit
The homomorphism problem for trace monoids. Theoret. Comput. Sci.. 2003;307:199-215.
Automorphic orbits in free groups: words versus subgroups. Internat. J. Algebra Comput.. 2010;20:561-590.Edit
Recognizable subsets of a group: finite extensions and the abelian case. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS. 2002:195-215.
Normal-convex embeddings of inverse semigroups. Glasgow Math. J.. 1993;35:115-121.
[2015-25] On the circulation of algebraic knowledge in the Iberian península: the sources of Pérez de Moya's Tratado de Arithmetica (1573) .Edit
Groups and automata: a perfect match. J. Automata Lang. Combin.. 2012;17(2-4):277-292.
Equações no «Libro de Algebra» de Pedro Nunes. Vol 68 APM 2002.Edit
Howson’s property for semidirect products of semilattices by groups. Comm. Algebra. 2016;44(6):2482-2494.Edit
[2012-16] Groups and automata: a perfect match .
Heart Rate Variability in Children Submitted to Surgery. Journal of Anesthesia & Clinical Research. 2016;7.Edit
Free group languages: rational versus recognizable. Theor. Inform. Appl.. 2004;38:49-67.
Numerical relations and skill level constrain co-adaptive behaviors of agents in sports teams. PloS one. 2014;9:e107112.Edit
Contribuição para o estudo do manuscrito Arte de Marear de Juan Pérez de Moya. LLULL. 2012;35(76):351-379.Edit
Extensions and submonoids of automatic monoids. Theoret. Comput. Sci.. 2002;289:727-754.Edit
On the semilattice of idempotents of a free inverse monoid. Proc. Edinburgh Math. Soc. (2). 1993;36:349-360.