Publications

Found 2290 results
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Yakubovich SB, Britvina LE. Convolutions related to the Fourier and Kontorovich-Lebedev transforms revisited. Integral Transforms Spec. Funct.. 2010;21:259-276.Edit
Luchko Y., Yakubovich SB. Convolutions of the generalized fractional integration operator. In: Complex analysis and generalized functions (Varna, 1991). Publ. House Bulgar. Acad. Sci., Sofia; 1993. 1. p. 199-211p. Edit
Yakubovich SB, Hai NT, Buschman R.. Convolutions for $H$-function transformations. Indian J. Pure Appl. Math.. 1992;23:743-752.Edit
Fisher B, Yakubovich SB, Telci M.. Convolutions and neutrix convolution in connection with the incomplete gamma function. Rad. Mat.. 2002;11:37-47.Edit
[2006-43] Yakubovich SB, Britvina LE. A convolution related to the inverse Kontorovich-Lebedev transform .Edit
Yakubovich SB, Britvina LE. A convolution related to the inverse Kontorovich-Lebedev transform. Sarajevo J. Math.. 2007;3(16):215-232.Edit
Yakubovich SB, Britvina LE. Convolution operators related to the Fourier cosine and Kontorovich-Lebedev transformations. Results Math.. 2009;55:175-197.Edit
[2008-7] Yakubovich SB, Britvina LE. Convolution operators related to Fourier cosine and Kontorovich-Lebedev Transformations .Edit
Rodrigues M., Vieira N, Yakubovich SB. A convolution operator related to the generalized Mehler-Fock and Kontorovich-Lebedev transforms. Results Math.. 2013;63:511-528.Edit
[2011-15] Yakubovich SB, Vieira N, Rodrigues M.. A convolution operator related to the generalized Mehler-Fock and Kontorovich-Lebedev transforms .Edit
Srivastava H., Yakubovich SB, Luchko Y.. The convolution method for the development of new Leibniz rules involving fractional derivatives and of their integral analogues. Integral Transform. Spec. Funct.. 1993;1:119-134.Edit
Raina R., Yakubovich SB, Saigo M. On convolution integrals associated with $H$-transforms. J. Fract. Calc.. 1997;11:53-65.Edit
Yakubovich SB, Gusarevich L.. On convolution integral equations associated with the Kontorovich-Lebedev transform. In: Boundary value problems, special functions and fractional calculus (Russian) (Minsk, 1996). Belorus. Gos. Univ., Minsk; 1996. 3. p. 391-400p. Edit
Yakubovich SB. Convolution Hilbert spaces associated with the Kontorovich-Lebedev transformation. Thai J. Math.. 2003;1:9-16.
Yakubovich SB. On the convolution for the Kontorovich-Lebedev transformation and its applications to integral equations. Dokl. Akad. Nauk BSSR. 1987;31:101-103, 188.
Conde-Sousa E, Aguiar P. Conversion from spatial patterns of activity to sequences of neuronal activations using gate interneurons. BMC Neuroscience. 2013;14:P3.
[2010-24] Cardoso JR, Loureiro AF. On the convergence of Schröder iteration functions for pth roots of complex numbers .Edit
Freitas JM, Haydn N, Nicol M. Convergence of rare event point processes to the Poisson process for planar billiards. Nonlinearity. 2014;27:1669-1687.Edit
Carvalho M, Lourenço JN. Convergence of p-adic series. Vol 72 Bol. Soc. Port. Mat. 2015.Edit
d'Almeida FD, Vasconcelos PB. Convergence of Multipower Defect-Correction for spectral computations of integral operators. Applied Mathematics and Computation. 2012;219:1601-1606.
[2010-33] d'Almeida FD, Vasconcelos PB. Convergence of Multipower Defect Correction for Spectral Computations of Integral Operators .
[2017-15] Freitas AC, Freitas JM, Magalhães MA. Convergence of Marked Point Processes of Excesses for Dynamical Systems .
Freitas AC, Freitas JM, Magalhães MA. Convergence of Marked Point Processes of Excesses for Dynamical Systems. Journal of the European Mathematical Society. In Press.
Davydov A., Basto-Gonçalves J. Controllability of inequalities at 2-singular points. Uspekhi Mat. Nauk. 2000;55:121-122.Edit
Davydov A., Basto-Gonçalves J. Controllability of generic inequalities near singular points. J. Dynam. Control Systems. 2001;7:77-99.Edit

Pages