Publications
Recognizable subsets of a group: finite extensions and the abelian case. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS. 2002:195-215.
José Anastácio da Cunha e a Álgebra do seu tempo. CMUM ed. Portugal, Braga: Universidade do Minho. Centro de Matemática (CMAT) 2005.Edit
Dicionário de Matemática Elementar, de Stella Baruk. Vol 2 Edições Afrontamento 2005.Edit
Finite automata for Schreier graphs of virtually free groups. J. Group Theory. 2016;19:25-54.Edit
[2017-28] On finitely generated submonoids of free groups .
Normal-convex embeddings of inverse semigroups. Glasgow Math. J.. 1993;35:115-121.
Effects of pitch size and skill level on tactical behaviours of Association Football players during small-sided and conditioned games. International Journal of Sports Science & Coaching. 2014;9:993-1006.Edit
[2010-14] Finite idempotent inverse monoid presentations .
Free group languages: rational versus recognizable. Theor. Inform. Appl.. 2004;38:49-67.
Extensions and submonoids of automatic monoids. Theoret. Comput. Sci.. 2002;289:727-754.Edit
The algebraic content of Bento Fernandes’s Tratado da arte de arismetica (1555). Historia Mathematica . 2008;35 :190-219.Edit
a partitional clustering algorithm validated by a clustering tendency index based on graph theory. pattern recognition. 2006;39:776-788.Edit
Luis Inacio Woodhouse (1857-1927). Vol 1. U. Porto Edições ed. 2018.Edit
Field dimension and skill level constrain team tactical behaviours in small-sided and conditioned games in football. Journal of sports sciences. 2014;32:1888-1896.Edit
On a class of automata groups generalizing lamplighter groups. Internat. J. Algebra Comput.. 2005;15:1213-1234.Edit
On the semilattice of idempotents of a free inverse monoid. Proc. Edinburgh Math. Soc. (2). 1993;36:349-360.
Finite idempotent inverse monoid presentations. Internat. J. Algebra Comput.. 2011;21:1111-1133.