Publications
New index transforms of the Lebedev–Skalskaya type. Integral Transforms and Special Functions. 2016;27(2):137-152.
On the Kontorovich-Lebedev transformation. J. Integral Equations Appl.. 2003;15:95-112.
A new Kontorovich-Lebedev-like transformation. Commun. Math. Anal.. 2012;13:86-99.
Integral convolutions of Laplace type for $G$-transforms. Vests\=ı Akad. Navuk BSSR Ser. F\=ız.-Mat. Navuk. 1991:11-16, 123.
A Voronoi-type summation formula involving $\sigma_{\rm i\tau(n)$ and index transforms. Integral Transforms Spec. Funct.. 2013;24:98-110.
[2013-13] On the square of Stieltjes's transform and its convolution with applications to singular integral equations .Edit
The heat kernel and Heisenberg inequalities related to the Kontorovich-Lebedev transform. Commun. Pure Appl. Anal.. 2011;10:745-760.
A class of integral equations and index transformations related to the modified and incomplete Bessel functions. J. Integral Equations Appl.. 2010;22:141-164.
A distribution associated with the Kontorovich-Lebedev transform. Opuscula Math.. 2006;26:161-172.
On the Mehler-Fock index transform in $L_p$-space. S\=urikaisekikenky\=usho Kōky\=uroku. 1994:130-144.Edit
On the generalized Dixon integral equation. Intern. Journ. of Math. And Comput.. 2017;28(1):25-32.
On the half-Hartley transform, its iteration and compositions with Fourier transforms. J. Integral Equations Appl. . 2014;26(4):581-608.
New inversion, convolution and Titchmarsh's theorems for the half-Hilbert transform. Integral Transforms Spec. Funct.. 2014;25:955-968.
Beurling's theorems and inversion formulas for certain index transforms. Opuscula Math.. 2009;29:93-110.
On a new index transformation related to the product of Macdonald functions. Rad. Mat.. 2004;13:63-85.
About a new class of integral transforms in Hilbert space. Math. Balkanica (N.S.). 1995;9:179-191.
On some properties of the Abel-Goncharov polynomials and the Casas-Alvero problem. Integral Transforms and Special Functions. 2016;27(8):599-610.
Some classes of discrete transforms that are generated by matrix linear operators. Vests\=ı Akad. Navuk Belarus\=ı Ser. F\=ız. Mat. Navuk. 1992:20-25, 123.