Publications
Profinite semigroups and applications. In: Structural theory of automata, semigroups, and universal algebra. Vol 207. Springer, Dordrecht; 2005. 1. p. 1-45p. (NATO Sci. Ser. II Math. Phys. Chem.; vol 207).Edit
SC-hyperdecidability of $\bf R$. Theoret. Comput. Sci.. 2001;255:569-591.Edit
Finite semigroups and universal algebra. Vol 3 World Scientific Publishing Co., Inc., River Edge, NJ 1994.Edit
A sequence of weakly monotonic automata with increasing level. Int. J. Algebra. 2013;7:91-100.Edit
Profinite identities for finite semigroups whose subgroups belong to a given pseudovariety. J. Algebra Appl.. 2003;2:137-163.Edit
The pseudoidentity problem and reducibility for completely regular semigroups. Bull. Austral. Math. Soc.. 2001;63:407-433.Edit
Equidivisible pseudovarieties of semigroups. Publicationes Mathematicae. 2017;90(3-4):435-453.Edit
Incremental DFA Minimisation. RAIRO - Theoretical Informatics and Applications. 2014;48:173-186.Edit
Semigroups whose idempotents form a subsemigroup. Math. Proc. Cambridge Philos. Soc.. 1992;111:241-253.Edit
Matrix mortality and the Černý-Pin conjecture. In: Developments in language theory. Vol 5583. Springer, Berlin; 2009. 6. p. 67-80p. (Lecture Notes in Comput. Sci.; vol 5583).Edit
Projection methods based on grids for weakly singular integral equations. Applied Numerical Mathematics. 2017;Volume 114:47-54.Edit
A note on pseudovarieties of completely regular semigroups. Bulletin of the Australian Mathematical Society. 2015;92(2):233-237.Edit
Sur certains systèmes d'équations avec contraintes dans un groupe libre. Portugal. Math.. 1999;56:409-417.Edit
On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis. 1990;27:333-350.Edit
Pointlike sets with respect to $\bf R$ and $\bf J$. J. Pure Appl. Algebra. 2008;212:486-499.Edit
Some quasi-ordered classes of finite commutative semigroups. Semigroup Forum. 1985;32:189-200.Edit
Monoids respecting $n$-chains of intervals. J. Algebra. 1997;187:183-202.Edit
A notion of branching rank for semilattices with descending chain condition. Order. 1988;4:397-409.Edit