Publications
Found 82 results
Author [ Title] Type Year Filters: Author is Labouriau, Isabel Salgado [Clear All Filters]
Projected wallpaper patterns. In: Real and complex singularities. Birkhäuser, Basel; 2007. 2. p. 209-217p. (Trends Math.).Edit
[2005-11] Projected Wallpaper Patterns .Edit
Periodic solutions in an array of coupled FitzHugh-Nagumo cells. J. Math. Anal. Appl.. 2014;412:29-40.Edit
Path Formulation for a Modal Family. Portugaliae Mathematica. 2001;58(4):407-424.
Partial symmetry breaking and heteroclinic tangencies. In: Progress and challenges in dynamical systems. Vol 54. Springer, Heidelberg; 2013. 2. p. 281-299p. Edit
Note on the unfolding of degenerate Hopf bifurcation germs. J. Differential Equations. 1985;57:436-439.
Loss of synchronization in partially coupled Hodgkin-Huxley equations. Bull. Math. Biol.. 2004;66:539-557.Edit
A local but not global attractor for a Z_n-symmetric map. J. Singul.. 2012;6:1-14.
A local but not global attractor for a $\Bbb Z_n$-symmetric map. J. Singul.. 2012;6:1-14.
Limit cycles for a class of Z_2n-equivariant systems without infinite equilibria. Electronic Journal of Differential Equations. 2016;122:1-12.Edit
Limit cycles for a class of quintic Z_6-equivariant systems without infinite critical points. Bulletin of the Belgian Mathematical Society - Simon Stevin. 2014;(21):841-857.Edit
Invariants for bifurcations. Houston J. Math.. 2006;32:445-458.Edit
[2004-27] Invariants for bifurcations .Edit
Instant chaos is chaos in slow motionLabouriau IS, Dias AP. Instant chaos is chaos in slow motion. J. Math. Anal. Appl.. 1996;199:138-148. J. Math. Anal. Appl.. 1996;199:138-148.Edit
Instant chaos is chaos in slow motion. J. Math. Anal. Appl.. 1996;199:138-148.Edit
Hopf bifurcation with tetrahedral and octahedral symmetry. SIAM Journal of Applied Dynamical Systems. 2016;15(1):106-124.Edit
Hexagonal Projected Symmetries. Acta Crystallographica Section A: Foundations and Advances. 2015;71(5):549-558.Edit
[2015-4] Hexagonal Projected Symmetries .Edit
A heteroclinic network in mode interaction with symmetry. Dyn. Syst.. 2010;25:359-396.Edit
Global saddles for planar maps. Journal of Dynamics and Differential Equations. In Press.