Publications
Reduction of Hamiltonian systems with symmetry. J. Differential Equations. 1991;94:95-111.
Minimal-dimensional realizations of Hamiltonian control systems. In: Theory and applications of nonlinear control systems ({S}tockholm, 1985). North-Holland, Amsterdam; 1986. 2. p. 233-240p.
Normal forms and linearization of resonant vector fields with multiple eigenvalues. J. Math. Anal. Appl.. 2005;301:219-236.Edit
Implicit Hamilton equations. Mat. Contemp.. 1997;12:1-16.
Local controllability in $3$-manifolds. Systems Control Lett.. 1990;14:45-49.
Local controllability of nonlinear systems on surfaces. Mat. Apl. Comput.. 1993;12:33-52.
Realization theory for Hamiltonian systems. SIAM J. Control Optim.. 1987;25:63-73.
The geometry of $2\times 2$ systems of conservation laws. Acta Appl. Math.. 2005;88:269-329.Edit
The geometry of 2×2 systems of conservation laws. Acta Applicandae Mathematicae. 2005;88(3):269-329.
Second-order conditions for local controllability. Systems Control Lett.. 1998;35:287-290.
Geometric conditions for local controllability. J. Differential Equations. 1991;89:388-395.
Equivalence of gradient systems. Portugal. Math.. 1981;40:263-277 (1985).
Invariant manifolds of a differentiable vector field. Portugal. Math.. 1993;50:497-505.
Controllability in codimension one. J. Differential Equations. 1987;68:1-9.
Linearization of resonant vector fields. Trans. Amer. Math. Soc.. 2010;362:6457-6476.
Analytic $k$-linearizability of some resonant Poisson structures. Lett. Math. Phys.. 1999;49:59-66.Edit
Local controllability of scalar input systems on $3$-manifolds. Systems Control Lett.. 1991;16:349-355.
Nonlinear observability and duality. Systems Control Lett.. 1984;4:97-101.
Analytic linearizability of some resonant vector fields. Proc. Amer. Math. Soc.. 2001;129:2473-2481 (electronic).Edit
Singularities of Euler equations and implicit Hamilton equations. In: Real and complex singularities ({S}ão {C}arlos, 1994). Vol 333. Longman, Harlow; 1995. 2. p. 203-212p.
Sufficient conditions for local controllability with unbounded controls. SIAM J. Control Optim.. 1987;25:1371-1378.
Symplectic rigidity and flexibility of ellipsoids. Indag. Math. (N.S.). 2013;24:264-278.