![]() |
|
|||||||||||||||||||||||||
Álgebra Linear e Geometria Analítica
|
||||||||||||||||||||||||||
Álgebra Linear e Geometria Analítica em R²
|
Temas |
Vectores. R² como
espaço vectorial real. Subespaços. Dependência e
indepêndencia linear. Base canónica. Bases,
coordenadas e dimensão.
Aplicações Lineares. Matriz de uma
aplicação linear.
Determinantes. Valores e vectores próprios.
Geometria Euclideana em R². Produto interno (euclideano). Norma (euclideana). Ângulo. Ortogonalidade. Rectas vectoriais e afins. Projecção ortogonal. Interpretação geométrica de det e de det A. Simetrias relativamente a uma recta. Transformações ortogonais em R². Os grupos O(2) e SO(2). |
Número de aulas | a determinar |
Texto simplificado e ilustrações (applets) | | 1
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 11 | 12 | 13 | 14 | 15 | 16 | Estas páginas html contêm um resumo do curso, com ilustrações e animações para serem manipuladas pelos alunos, com o objectivo de conseguirem uma forte intuição geométrica sobre os
principais conceitos de ALGA.
O texto com todos os detalhes teóricos está contido no módulo 1 (pdf). |
Catálogo de aplicações lineares (applets) | |
Fichas de trabalho |
ficha 1 (pdf) Esta ficha contem exercícios resolvidos. |
Número de Páginas html | 16 páginas |
Objectivos | conseguir uma forte intuição geométrica sobre os principais conceitos de ALGA |
Testes de auto-avaliação (quizes) | quiz nº 1 (pdf) |
Bibliografia base | Módulo 1 (pdf) Este
é o texto base que contem todos os detalhes teóricos e
ainda os enunciados dos exercícios para serem resolvidos nas
aulas TP's.
Outras referências bibliográficas (pdf) |
Fazer pergunta | link |
Última actualização | Setembro de 2010 |